Temperature Studies of the LaMn2Si2 Intermetallide by the Raman Spectroscopy and Magnetic Force Microscopy Methods
- Authors: Korkh Y.V.1, Ponomareva E.A.1, Druzhinin A.V.1,2, Gerasimov E.G.1,2, Mushnikov N.V.1,2, Kuznetsova T.V.1,2
-
Affiliations:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the First President of Russia B.N. Yeltsin
- Issue: Vol 125, No 3 (2024)
- Pages: 287-292
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://jdigitaldiagnostics.com/0015-3230/article/view/662783
- DOI: https://doi.org/10.31857/S0015323024030064
- EDN: https://elibrary.ru/WUAAEH
- ID: 662783
Cite item
Abstract
Raman spectra of the LaMn2Si2 compound were obtained for the first time by Raman spectroscopy. The change of Raman spectral characteristics in the temperature range of 263–553 K was investigated. The high sensitivity of the Raman spectroscopy method to a change in the magnetic state caused by a temperature influence has been determined. A change in the spectral characteristics of the vibration mode of manganese atoms near the Curie and Neel temperatures has been revealed. The magnetic force microscopy technique was used to investigate the surface features of the LaMn2Si2 compound at room temperature. A change in the type of magnetic domain structure in LaMn2Si2 after cooling from 298 to 263 K has been found.
About the authors
Yu. V. Korkh
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
E. A. Ponomareva
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
A. V. Druzhinin
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002
E. G. Gerasimov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002
N. V. Mushnikov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002
T. V. Kuznetsova
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002
References
- Gerasimov E.G., Kurkin M.I., Korolyov A.V., Gaviko V.S. Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn2Si2 // Physica B. 2002. V. 322. P. 297–305.
- Mushnikov N.V., Gerasimov E.G., Terentev P.B., Gaviko V.S. Magnetic structures and magnetic phase transitions in RMn2Si2 // AIP Advances. 2018. V. 8. P. 101411.
- Kuznetsova T.V., Korkh Y.V., Grebennikov V.I., et al. Investigation of Electronic States and Magnetic Domain Structure of La1 – xSmxMn2Si2 (x = 0, 0.25) Layered Intermetallic Compounds by Resonant Photoemission Spectroscopy and Magnetic Force Microscopy // Phys. Met. Metal. 2022. V. 123. P. 451–458.
- Kumar C.S.S.R. (ed.). Raman spectroscopy for nanomaterials characterization. Springer Science & Business Media, 2012.
- Lewis I.R., Edwards H. Handbook of Raman spectroscopy: from the research laboratory to the process line. CRC press, 2001.
- Yamanaka S., Kajiyama M., Sivakumar S.N., and Fukuoka H. Strong electron-phonon coupling and enhanced phonon Grüneisen parameters in valence-fluctuating metal EuPd2Si2 // High Press. Res. 2004. V. 24. P. 481.
- Cooper S.L., Klein M.V., Fisk Z., and Smith J.L. Raman scattering study of the electronic and vibrational excitations in CeCu2Si2 // Phys. Rev. B. 1986. V. 34(9). P. 6235.
- Antal A., Knoblauch T., Singh Y., Gegenwart P., Wu D., and Dressel M. Optical properties of the iron-pnictide analog BaMn2As2 // Phys. Rev. B. 2012. V. 86 (1). P. 014506.
- Schwarz A., Wiesendanger R. Magnetic sensitive force microscopy // Nano Today. 2008. V. 3. Issues 1–2. P. 28–39.
- Kazakova O., Puttock R., Barton C., Corte-León H., Jaafar M., Neu V., Asenjo A. Frontiers of magnetic force microscopy // J. Appl. Phys. 2019. V. 125. P. 060901.
- Cheong S.-W., Fiebig M., Wu W., Chapon L., Kiryukhin V. Seeing is believing: Visualization of antiferromagnetic domains // NPJ Quantum Mater. 2020. V. 5. № 3.
- Gerasimov E.G., Gaviko V.S., Neverov V.N., Korolyov A.V. Magnetic phase transitions and giant magnetoresistance in La1-xSmxMn2Si2 (0 ≤ x ≤ 1) // J. Alloys Compd. 2002. V. 343. P. 14–25.
- Iliev M.N., Abrashev M.V., Laverdière J., Jandl S., Gospodinov M.M., Wang Y.Q., and Sun Y.Y. Distortion-dependent Raman spectra and mode mixing in RMnO3 perovskites (R = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y) // Physical Review B. 2006. V. 73(6). P. 064302.
- Bernardini S., Bellatreccia F., Casanova Municchia, Della Ventura G., and Sodo A. Raman spectra of natural manganese oxides // Journal of Raman Spectroscopy. 2019. V. 50(6). P. 873–888.
- Borowicz P., Latek M., Rzodkiewicz W., Łaszcz A., Czerwinski A., and Ratajczak J. Deep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk material // Adv. Natural Sciences: Nanoscience and Nanotechnology. 2012. V. 3(4). P. 045003.
Supplementary files
