Surface modification of Zr–Nb alloy by nanosecond pulse laser processing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of nanosecond pulse laser processing of the Zr–1% Nb alloy surface of specimens in the annealed state and after their two-stage deformation treatment by abc-pressing and rolling has been investigated. The morphology of the modified surface of specimens is described using optical and scanning microscopy. Furthermore, the microrelief formed as a result of vaporization and melting of a thin layer of material subjected to laser processing is evaluated quantitatively. Durometric measurements were conducted to ascertain the hardness of the near-surface layer and the impact of laser-induced shock waves on its hardness. The electron backscattering diffraction (EBSD) analysis data were employed to describe the structure of the specimens in the near-surface layer. The influence of the initial grain size on the quality of the modified surface, as well as on the depth and hardening of the near-surface layers has been established.

About the authors

A. N. Petrova

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

I. G. Brodova

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Astafiev

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

D. Y. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. O. Kuryshev

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. N. Balakhnin

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013

S. V. Uvarov

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013

O. B. Naimark

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013

References

  1. Montross C.S., Tao Wei, Lin Ye, Graham Clark, Yiu-Wing Mai. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Intern. J. Fatigue. 2002. V. 24. P. 1021–1036.
  2. Masse G., Barreau J. Surface modification by laser induced shock waves // Surf. Eng. 1995. V. 11. P. 131–132.
  3. Dane C., Hackel L., Daly J. Shot peening with laser // Adv. Mater. Process. 1998. V. 153. P. 37–48.
  4. Zhang Y., You J., Lu J., Cui C., Jiang, Y., Ren X. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy // Surf. Coat. Technol. 2010. V. 204. P. 3947–3953.
  5. Zhang H., Yu Ch. Laser shock processing of 2024-T62 aluminum alloy // Mater. Sci. Eng.: A. 1998. V. 257. № 2. P. 322–327.
  6. Montross C.S., Florea V., Swain M.V. Influence of coatings on sub-surface mechanical properties of laser peened 2011-T3 aluminum // J. Mater. Sci. 2001. V. 36. P. 1801–1807.
  7. Zhou L., Li Y.H., He W.F., Wang X.D., Li Q.P. Laser shock processing of Ni-base superalloy and high cycle fatigue properties // Mater. Sci. Forum. 2011. V. 697–698. P. 235–238.
  8. Banas G, Elsayed-Ali H.E., Lawrence F.V., Rigsbee J.M. Laser shock-induced mechanical and microstructural modification of welded maraging steel // J. Appl. Phys. 1990. V. 67. P. 2380–2384.
  9. Song Sh., Yizhou Sh., Zonghui Ch., Weibiao X., Zhaoru H., Shuangshuang S., Weilan L. Laser shock peening regulating residual stress for fatigue life extension of 30CrMnSiNi2A high-strength steel // Optics & Laser Technology. 2023. V. 169. P. 110094.
  10. Колобов Ю.Р., Манохин С.С., Бетехтин В.И., Кадомцев А.Г., Нарыкова М.В., Одинцова Г.В., Храмов Г.В. Исследование влияния обработки лазерными импульсами наносекундной длительности на микроструктуру и сопротивление усталости технически чистого титана // Письма в ЖТФ. 2022. Т. 48. № 2. С. 15–19.
  11. Clauer A.H. Laser shock peening for fatigue resistance // Surface performance of titanium. Warrendale (PA): TMS. 1996. P. 217–230.
  12. Ruschau J.J., John R., Thompson S.R., Nicholas T. Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium // International Journal of Fatigue. 1999. V. 21. P. 199–209.
  13. Kamkarrad H., Narayanswamy S., Tao X.S. Feasibility study of high-repetition rate laser shock peening of biodegradable magnesium alloys // Int. Adv. Manuf. Technol. 2014. V. 74. P. 1237–1245.
  14. Hatamleh O.A. Comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints // Int. J. Fatigue. 2009. V. 31. P. 974–988.
  15. Trdan U., Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods // Corros. Sci. 2012. V. 59. P. 324–333.
  16. Zhang X.C., Zhang Y.K., Lu J.Z., Xuan F.Z., Wang Z.D., Tu S.T. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening // Materials Science and Engineering: A. 2010. V. 527. № 15. P. 3411–3415.
  17. Veiko V.P., Karlagina Yu.Yu., Egorova E.E., Zernitskaya E.A., Kuznetsova D.S., Elagin V.V., Zagaynova E.V., Odintsova G.V. In vitro investigation of laser-induced microgrooves on titanium surface // J. Phys.: Conf. Ser. 2020. V. 1571. P. 012010.
  18. Li Zh.Y., Guoa X.W., Yua Sh.J., Ninga Ch.M., Jiaob Y.J., Caia Zh.B. Influence of laser shock peening on surface characteristics and corrosion behavior of zirconium alloy // Mater. Characteriz. 2023. V. 206. P. 113387.
  19. Eroshenko A.Yu., Mairambekova A.M., Sharkeev Yu.P., Kovalevskaya Zh.G., Khimich M.A. Structure, phase composition and mechanical properties in bioinert zirconium-based alloy after severe plastic deformation // Letters Mater. 2017. Т. 7. № 4. P. 469–472.

Supplementary files

Supplementary Files
Action
1. JATS XML