The Structure and Mechanical Properties of Rolled Sheets of the Multicomponent Al–2.5Ca–2.5Mg Alloy Doped with Scandium and Zirconium
- Authors: Doroshenko V.V.1,2, Naumova E.A.1, Aksenov A.A.2, Shcherbakova O.O.3, Finogeev A.S.1
-
Affiliations:
- National Research Technological University MISiS
- Moscow Polytechnic University
- Ishlinsky Institute for Problems of Mechanics, Russian Academy of Sciences
- Issue: Vol 124, No 7 (2023)
- Pages: 616-621
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://jdigitaldiagnostics.com/0015-3230/article/view/662971
- DOI: https://doi.org/10.31857/S0015323023600272
- EDN: https://elibrary.ru/WVJUWC
- ID: 662971
Cite item
Abstract
Using the Al–2.5% Mg–1% Mn–0.4% Fe base alloy (wt %) as an example, the effects of calcium, scandium, and zirconium additives (at about 2.5, 0.1, and 0.2 wt %, respectively) on the strength of rolled sheets has been studied. Ingots of the alloy of the chosen composition and the hot and cold rolled sheets obtained from them were used as objects for the experimental study. Based on microstructural studies, it is
shown that calcium binds iron into compact inclusions (presumably, into the Al10CaFe2 phases), which has a positive effect on the mechanical properties of the alloy, as well as on the technological plasticity during the
rolling operation. Zirconium and scandium additives make it possible to form thermally stable nanoparticles of the Al3(Zr, Sc)–L12 phase, which is favorable for maintaining a partially unrecrystallized structure in cold
rolled sheets during annealing at least up to 400°C. Using the alloy of the selected composition as an example, the fundamental possibility for producing sheet products from cast (unhomogenized) ingots with the properties of thermally hardenable alloys of the AlSiMgMn and AlZn4.5Mg1.5Mn types without using quenching has been demonstrated.
About the authors
V. V. Doroshenko
National Research Technological University MISiS; Moscow Polytechnic University
Email: v.doroshenko@mail.ru
Moscow, 119049 Russia; Moscow, 107023 Russia
E. A. Naumova
National Research Technological University MISiS
Email: v.doroshenko@mail.ru
Moscow, 119049 Russia
A. A. Aksenov
Moscow Polytechnic University
Email: v.doroshenko@mail.ru
Moscow, 107023 Russia
O. O. Shcherbakova
Ishlinsky Institute for Problems of Mechanics, Russian Academy of Sciences
Email: v.doroshenko@mail.ru
Moscow, 119526 Russia
A. S. Finogeev
National Research Technological University MISiS
Author for correspondence.
Email: v.doroshenko@mail.ru
Moscow, 119049 Russia
References
- Polmear I. Light alloys. From traditional alloys to nanocrystals. Elsevier, 2006. 416 p.
- Мондольфо Л.Ф. Структура и свойства сплавов. М.: Металлургия, 1979. 639 с.
- Хэтч Дж.Е. Алюминий. Свойства и физическое металловедение: Справоч. изд. М.: Металлургия, 1989. 425 с.
- Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. Промышленные алюминиевые сплавы: Справ. изд. М.: Металлургия, 1984. 528 с.
- Филатов Ю.А. Развитие представлений о легировании скандием сплавов Al–Mg // Технология легких сплавов. 2015. № 2. С. 19–22.
- Filatov Yu.A., Yelagin V.I., Zakharov V.V. New Al–Mg–Sc alloys // Mater. Sci. Eng. A. 2000. V. 280. P. 97–101.
- Sawtell R., Jensen C. Mechanical properties and microstructures of Al–Mg–Sc alloys // Metall. Trans. A. 1990. V. 21A. P. 421–430.
- Филатов Ю.А. Алюминиевые сплавы системы Al–Mg–Sc для сварных и паяных конструкций // Технология легких сплавов. 2013. № 3. С. 36–42.
- Ocenasek V., Slamova M. Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys // Mater. Charact. 2001. V. 47. P. 157–162.
- Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced Aluminum Alloys Containing Scandium: Structure and Properties. Gordon and Breach Science Publishers. 1998. 188 p.
- Belov N.A., Alabin A.N., Eskin D.G., Istomin-Kastrovskiy V.V. Optimization of Hardening of Al–Zr–Sc Casting Alloys // J. Mater. Sci. 2006. V. 41. P. 5890–5899.
- Поздняков А.В., Барков Р.Ю., Левченко В.С. Влияние Yb на фазовый состав и механические свойства сплавов Al–Mg–Mn–Zr–Sc и Al–Mg–Cr–Zr–Sc с низкой концентрацией скандия // ФММ. 2020. Т. 121. № 1. С. 93–98.
- Xu S.W., Oh-ishi K., Kamado S., Uchida F., Homma T., Hono K. High-strength extruded Mg–Al–Ca–Mn alloy // Scripta Mater. 2011. V. 65. P. 269–272.
- Kim W.J., Lee Y.G. High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate // Mater. Sci. Eng. A. 2011. V. 528. P. 2062–2066.
- Aljarrah M., Medraj M., Wang X., Essadiqi E., Muntasar A., Dénès G. Experimental investigation of the Mg–Al–Ca system // J. Alloys Compd. 2007. V. 436. P. 131–141.
- Белов Н.А., Наумова Е.А., Базлова Т.А., Алексеева Е.В. Структура, фазовый состав и упрочнение литейных алюминиевых сплавов системы Al–Ca–Mg–Sc // ФММ. 2016. Т. 117. № 2. С. 208.
- Belov N.A., Naumova E.A., Akopyan T.K., Doroshenko V.V. Phase diagram of Al–Ca–Mg–Si system and its application for the design of aluminum Alloys with high magnesium content // Met. 2017. V. 7. №. 10. P. 429.
- Белов Н.А., Наумова Е.А., Илюхин В.Д., Дорошенко В.В. Структура и механические свойства отливок сплава Al–6% Ca–1% Fe, полученных литьем под давлением // Цветные Металлы. 2017. № 3. С. 69–75.
- Волкова О.В., Дуб А.В., Ракоч А.Г., Гладкова А.А., Самошина М.Е. Склонность к питтинговой коррозии отливок из экспериментальных сплавов Al–6% Ca, Al–1% Fe, Al–6% Ca–1% Fe и промышленного сплава AK12M2 // Изв. ВУЗов. Цветная Металлургия. 2017. № 5. С. 75–81.
- Vlach M., Stulikova I., Smola B., Piesova J., Cisarova H., Danis S., Plasek J., Gemma R., Tanprayoon D., Neuber V. Effect of cold rolling on precipitation processes in Al–Mn–Sc–Zr alloy // Mater. Sci. Eng. A. 2012. V. 548. P. 27–32.
- Пугачева Н.Б., Вичужанин Д.И., Калашников С.Т., Иванов А.В., Смирнов С.В., Фролова Н.Ю. Исследование процессов возврата в деформационно-упрочненном сплаве Al–Mg–Mn–Fe–Si // ФММ. 2016. Т. 117. № 9. С. 952–958.
Supplementary files
