The high-temperature in situ synchrotron study of structural-phase transformations in 3D-printed Ti–6Al–4V and Ti–5Al–3Mo–V titanium alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An wire-feed electron beam additive manufactoring has been used to obtain the samples of Ti‒6Al–4V and Ti–5Al–3Mo–V titanium alloys. Optical, scanning, and transmission electron microscopies have been used to show that the microstructure of the 3D printed samples of Ti–6Al–4V and Ti–5Al–3Mo–V alloys consists of columnar primary grains of the β-phase, within which martensitic αʹ plates are formed. The high-temperature synchrotron X-ray diffraction technique was used to show the evolution of αʹ → α + β +αʹʹ transformations in Ti–Al–V and Ti–Al–Mo-V titanium alloys, which causes an increase in the content of residual β-phase and the formation of orthorhombic αʹʹ-phase. The decomposition of the αʹ-phase in Ti–6Al–4V and Ti–5Al–3Mo–V samples started at temperatures of 600 and 400°C respectively. Intensive oxidation of titanium alloys in a the high-temperature chamber at temperatures above 900°C resulted in a decrease in the volume fraction of β- and αʹʹ-phases, as well as inhibition of polymorphic α→β transformation.

Full Text

Restricted Access

About the authors

T. A. Lobova

Institute of Strength Physics and Materials Science SB RAS

Author for correspondence.
Email: tal@ispms.ru
Russian Federation, Tomsk, 634055

A. V. Panin

Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk Polytechnic University

Email: tal@ispms.ru
Russian Federation, Tomsk, 634055; Tomsk, 634050

O. B. Perevalova

Institute of Strength Physics and Materials Science SB RAS

Email: tal@ispms.ru
Russian Federation, Tomsk, 634055

M. S. Syrtanov

National Research Tomsk Polytechnic University

Email: tal@ispms.ru
Russian Federation, Tomsk, 634050

References

  1. Veiga C., Davim J.P., Lourerio A. Properties and applications of titanium alloys: a brief review // Rev. Adv. Mater. Sci. 2012. V. 32. P. 133–148.
  2. Williams J.C., Boyer R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components // Metals. 2020. 10(6). P. 705.
  3. Vafadar A., Guzzomi F., Rassau A., Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges // Appl. Sci. 2021. 11(13). P. 1213.
  4. Wanjara P., Watanabe K., Formanoir C., Yang Q., Bescond C., Godet S., Brochu M., Nezaki K., Gholipour J., Patnaik P. Titanium Alloy Repair with Wire-Feed Electron Beam Additive Manufacturing Technology // Adv. Mater. Sci. Eng. 2019. 3979471. P. 23.
  5. Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests // Int. J. Adv. Manuf. Technol. 2015. V. 81. P. 465–481.
  6. Колубаев Е.А., Рубцов В.Е., Чумаевский А.В., Астафурова Е.Г. Научные подходы к микро-, мезо- и макроструктурному дизайну объемных металлических и полиметаллических материалов с использованием метода электронно-лучевого аддитивного производства // Физ. мезомех. 2022. Т. 25. № 4. С. 5–18.
  7. Xu J., Zhu J., Fan J., Zhou Q., Peng Y., Guo S. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication // Vacuum. 2019. 167. P. 364–373.
  8. Present S.J., Taminger K.M., Domack C.S., Hemker K.J. The Inhomogeneous Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Electron Beam Freeform Fabrication // Metall. Mater. Trans. A. 2023. V. 54. P. 312–319.
  9. Ter Haar G.M., Becker T.H. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties // Materials. 2018. V. 11(1). P. 146.
  10. Zhang C., Zou D., Mazur M., Mo J.P.T., Li G., Ding S. The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V // Materials. 2023. 16. P. 2583.
  11. Панин А.В., Казаченок М.С., Казанцева Л.А., Перевалова О.Б., Мартынов С.А. Изменение микроструктуры и фазового состава 3D-напечатанного сплава Ti-6Al-4V при механическом нагружении // ФММ. 2023. Т. 124. № 2. С. 226–232.
  12. Malinov S., Sha W., Guo Z., Tang C.C., Long A.E. Synchrotron X-ray diffraction study of the phase transformations in titanium alloys // Mater. Charact. 2002. V. 48. P. 279–295.
  13. Perevalova O.B., Syrtanov M.S. In situ study of phase transformations in electron beam additive manufactured Ti-6Al-4V titanium alloy by high temperature synchrotron X-ray diffraction and TEM // J. Alloys Compd. 2022. V. 917. P. 165463.
  14. Perevalova O.B., Panin A.V., Syrtanov M.S. In Situ Synchrotron Study of the Phase Transformations in Ti-5.7Al-1.6V-3Mo Titanium Alloy at High Temperature // J. Mater. Eng. Perform. 2023.
  15. Gornakova A.S., Straumal A.B., Khodos I.I., Gnesin I.B., Mazilkin A.A., Afonikova N.S., Straumal B.B. Effect of composition, annealing temperature, and high pressure torsion on structure and hardness of Ti–V and Ti–V–Al alloys // J. Appl. Phys. 2019. V. 125. P. 082522.
  16. Wang C.H., Yang C.D., Liu M., Li X., Hu P.F., Russell A.M., Cao G.H. Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti–Mo alloys // J. Mater. Sci. 2016. V. 51. P. 6886–6896.
  17. Lütjering G., Williams J.C. Titanium. 2nd ed. Springer. Berlin. Heidelberg. 2007. P. 27–31.
  18. Frary M., Abkowitz S., Abkowitz S.M., Dunand D.C. Microstructure and mechanical properties of Ti/W and Ti-6Al-4V/W composites fabricated by powder-metallurgy // Mater. Sci. Eng.: A. 2003. V. 344. P. 103–112.
  19. Bignon M., Bertrand E., Tancret F., Rivera-Díaz-del-Castillo P.E.J. Modelling martensitic transformation in titanium alloys: The influence of temperature and deformation // Materialia. 2019. V. 7. P. 100382.
  20. Kumar M.S., Begum S.R., Vasumathi M., Nguyen С.C., Le Q.V. Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys // Synth. Sinter. 2021. V. 1(1). P. 41–47.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical images (a, g), EBSD maps (b, d) and TEM images (c, f) of the structure of 3D-printed titanium alloys Ti–6Al–4V (a, b, c) and Ti–5Al–3Mo–V (d, d, f).

Download (677KB)
3. Fig. 2. Sections of the diffraction patterns of 3D-printed Ti–6Al–4V (a) and Ti–5Al–3Mo–V (b) samples obtained during heating to 1100°C and subsequent cooling.

Download (701KB)
4. Fig. 3. Graphs of changes in the volume fractions of second phases in 3D-printed samples of Ti–6Al–4V (a) and Ti–5Al–3Mo–V (b) during heating to 1100°C and subsequent cooling.

Download (160KB)
5. Fig. 4. Graph of the change in the c/a ratio of the crystal lattice of the α/αʹ phase in 3D-printed samples of Ti–6Al–4V (1) and Ti–5Al–3Mo–V (2) during heating to 1100°C and subsequent cooling.

Download (90KB)