Structural and phase transformations and crystallographic texture in industrial Ti–6Al–4V alloy with globular morphology of α-phase grains: plate’s transverse section perpendicular to rolling direction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microtexture and microstructure of the industrial Ti–6Al–4V alloy almost in the single-phase α state, obtained using the thermomechanical treatment including the hot rolling, are studied by the X-ray diffraction analysis method and optical and transmission and scanning electron microscopy. It is established that the layered fine-grained microstructure in the cross section of the plate perpendicular to the rolling direction is characterized by selection of equiaxed globular α grains that obey Burgers orientation relationships and twinning orientations. The revealed distributions of α grains over dimensions and crystallographic orientations in the plate’s cross section are related to the peculiarities of distributions established for the plane of plate rolling. The structural mechanisms of generating the microtexture regions in the alloy are discussed.

Full Text

Restricted Access

About the authors

V. G. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013

D. Yu. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

Yu. N. Gornostyrev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013

N. N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. E. Svirid

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

O. B. Naimark

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

A. N. Balakhnin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

V. A. Oborin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013

References

  1. Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 512 с.
  2. Полькин И.С. Упрочняющая термическая обработка титановых сплавов. М.: Металлургия, 1984. 96 с.
  3. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  4. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  5. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС, 2009. 520 с.
  6. Banerjee D., Williams J.C. Perspectives of titanium science and technology // Acta Mater. 2013. V. 61. P. 844–879.
  7. Mosheh A.O., Mikhaylovskaya A.V., Kotov A.D., Kwame J.S., Aksenov S.A. Superplasticity of Ti-6Al-4V titanium alloy: macrostructure evolution and constitutive modelling // Materials. 2019. V. 12. P. 1756.
  8. Котов А.Д., Михайловская А.В., Мослех А.О., Пурсело Т.П., Просвиряков А.С., Портной В.К. Сверхпластичность ультрамелкозернистого титанового сплава Ti-4% Al-1% V-3% Mo // ФММ. 2019. Т. 120. № 1. С. 63–72.
  9. Bohemen S.M.C., Kamp A., Petrov R.N., Kestens L.A.I., Sietsma J. Nucleation and variant selection of secondary α-plates in β Ti alloy // Acta Mater. 2008. V. 56. P. 5907–5914.
  10. Glavicic M.G.G., Barta B.B.B., Jha S.K.K., Szczepanski C.Y.Y. The origin ofmicrotexture in duplex Ti-alloys // Mater. Sci. Eng. 2009. V. A513–514. P. 325–328.
  11. Warwick J.L.W., Jones N.G., Bantounas I., Preuss M., Dye D. In-situ observation of texture and microstructure evolution during rolling and globularisation on Ti-6Al-4V // Acta Mater. 2013. V. 61. Р. 603–1615.
  12. Tympel P.O., Lindley T.C., Saunders E.A., Dixon M., Dye D. Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V // Acta Mater. 2016. V. 103. P. 77–88.
  13. Modina I.M., Dyakonov G.S., Stotskiy A.G., Yakovleva T.V., Semenova I.P. Effect of the texture of the ultrafine-grained Ti-6Al-4V titanium alloy on impact toughness // Materials. 2023. V. 16. P. 1318.
  14. Bonisch M., Panigrahi A., Stoica M., Calin M., Ahrens E., Zehetbauer M., Skrotzki M., Eckert J. Giant thermal expansion and α-precipitation pathways in Ti-alloys // Nature Comm. 2017. V. 8. P. 1429.
  15. Evans W.J., Gostelow C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy // Metall. Trans. A. 1979. V. 10. P. 1837–1846.
  16. Evans W.J., Bache M.R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 // Int. J. Fatig. 1994. V. 16. P. 443–452.
  17. Bache M., Cope M., Davies H., Evans W., Harrison G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature // Int. J. Fatigue. 1997. V. 19(93). P. 83–88.
  18. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // Int. J. Fatig. 2003. V. 25. P. 1079–1087.
  19. Sinha V., Mills M.J., Williams J.C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy // Metall. Mater. Trans. A. 2004. V. 35. № 10. P. 3141–3148.
  20. Toubal L., Bocher P., Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy // Int. J. Fatigue. 2009. V. 31. P. 601–605.
  21. Pilchack A.L. Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth // Scripta Mater. 2013. V. 68. P. 277–280.
  22. Pilchack A.L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys // Scripta Mater. 2014. V. 74. P. 68–71.
  23. Cuddihy M.A., Stapleton A., Williams S., Dunne F.P.E. On cold dwell facet fatigue in titanium alloy aero-engine components // Int. J. Fatig. 2017. V. 97. P. 177–189.
  24. Xu Y., Joseph S., Karamched P., Fox K., Rugg D., Dunne F.P.E., Dye D. Predicting dwell fatigue life in titanium alloys using modelling and experiment // Nature Comm. 2020. V. 11. P. 5868.
  25. Hu Z., Zhou X., Liu H., Yi D. The formation of microtextured region during thermo-mechanical processing in a near-β titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe // J. All. and Comp. 2021. V. 853. P. 156964.
  26. Rezaei M., Zarei-Hanzaki A., Anousheh A.S., Abedi H.R., Pahlevani F., Hossain R., Sahajwalla V., Berto F. On the damage mechanisms during compressive dwell-fatigue of β-annealed Ti-6242S alloy // Int. J. Fatig. 2021. V. 146. P. 106158.
  27. Britton T.B., Birosca S., Preuss M., Wilkinson A.J. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy // Scr. Mater. 2010. V. 62. № 9. P. 639–642.
  28. Littlewood P.D., Wilkinson A.J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading // Int. J. Fatigue. 2012. V. 43. P. 111–119.
  29. Kulkarni G., Hiwarkar V., Singh R. Texture evolution of Ti6Al4V during cold deformation // Int. J. Mater. Mechan. Manufacturing. 2019. V. 7. № 6. P. 250–253.
  30. Muth A., John R., Pilchak A., Kalidindi S.R., McDowell D.L. Analysis of Fatigue Indicator Parameters for Ti-6Al-4V microstructures using extreme value statistics in the transition fatigue regime // Int. J. Fatigue. 2021. V. 153. P. 106441.
  31. Oborin V., Balakhnin A., Naimark O., Gornostyrev Y., Pushin V., Kuranova N., Rasposienko D., Svirid A., Uksusnikov A., Inozemtsev A., Gabov I. Damage-failure transition in titanium alloy Ti-6Al-4V under dwell fatigue loads // Fratturaed Integrità Strutturale. 2024. V. 18. № 67. P. 217–230.
  32. Naimark O., Bayandin Yu., Uvarov S., Bannikova I., Saveleva N. Critical Dynamics of Damage-Failure Transition in Wide Range of Load Intensity // Acta Mechanica. 2021. V. 232. P. 1943–1959.
  33. Naimark O., Oborin V., Bannikov M., Ledon D. Critical Dynamics of Defects and Mechanisms of Damage-Failure Transitions in Fatigue // Materials. 2021. V. 14. № 10. P. 2554.
  34. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Марченкова Е.Б., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Cтруктурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен α-фазы. Плоскость прокатки // ФММ. 2024. Т. 125. № 6. С. 686–698.
  35. Laine S. The role of twinning deformation of α-phase titanium. Cambridge: University of Cambridge, 2017. 224 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction pattern obtained in a section transverse to the rolling plane (RD) and perpendicular to the rolling direction RD of a Ti–6Al–4V alloy plate and line diagrams of α- and β-phase reflexes.

Download (4KB)
3. Fig. 2. OM (a) and SEM SE images (c) of the alloy structure in the cross section (RD) of the plate and histograms of the α-grain size distribution (b, d, e). The direction TD, perpendicular to the normal to the rolling plane (ND) and RD are indicated, as in the other presented SEM images (Figs. 5–8).

Download (135KB)
4. Fig. 3. Experimental (a) and calculated (b) histograms of the distribution of the angle of misorientation of α-crystallites in the cross section (RD) of the Ti–6Al–4V alloy plate. The solid black line corresponds to the experimental histogram, the thick solid red line corresponds to the total Gaussian function, consisting of the Gaussian functions for the Burgers OS (solid thin lines) and for twin orientations (dashed lines).

Download (35KB)
5. Fig. 4. DORE map in Euler angles (a), color scale of Euler angles (in the inset to Fig. a) and Rodriguez–Frank color diagram of α-crystallite rotations depending on Euler angles (b) in the cross section (RD) of a Ti–6Al–4V alloy plate.

Download (126KB)
6. Fig. 5. DOES maps in OPF colors (a, b), enlarged fragments with orientation indicated by color and projections of the unit cell of the α-phase (c, d), obtained from the cross section (RD) of the Ti–6Al–4V alloy plate, as well as the standard stereographic triangle of the OPF of the hcp α-phase.

Download (219KB)
7. Fig. 6. DOE maps of the α-grain size distribution (a) and its enlarged fragments of the grain-subgrain structure with the designation of the misorientation angle at the boundaries of different α-phase crystallites in the cross-section (RD) of the plate (b–d).

Download (128KB)
8. Fig. 7. DOES maps (a, b, c), integral map (a) and the corresponding PPF (g), as well as PPF with one isolated pole (d, e), which correspond to DOES maps (b, c) in the cross-section of the alloy plate.

Download (100KB)
9. Fig. 8. Typical triangles of the OPF in three projections for the cross-section (Z||RD) of the alloy plate.

Download (20KB)
10. Fig. 9. SEM image (SE) of the microstructure (a) and maps of the distribution of chemical elements (b — Al, c — Ti, d — V) in the cross section of the sample (RD). The maps were obtained by the EDS method in characteristic Ka radiation.

Download (96KB)
11. Fig. 10. Light- (a, d) and dark-field (b–c reflection 1) TEM images of twins of the K1||(101) type in the α-phase, the corresponding microelectron diffraction pattern in the reciprocal lattice plane (301) (c) and an image of the dislocation substructure (d) in the cross-section of the alloy plate. The inset to Fig. 10a shows an enlarged fragment with an image of thin twins. K1 is the twinning plane.

Download (49KB)