Structural and phase transformations and crystallographic texture in industrial Ti–6Al–4V alloy with globular morphology of α-phase grains: plate’s transverse section perpendicular to rolling direction
- Authors: Pushin V.G.1,2, Rasposienko D.Y.1, Gornostyrev Y.N.1,2, Kuranova N.N.1, Makarov V.V.1, Svirid A.E.1, Naimark O.B.2, Balakhnin A.N.2, Oborin V.A.2
-
Affiliations:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 125, No 7 (2024)
- Pages: 795-807
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://jdigitaldiagnostics.com/0015-3230/article/view/681035
- DOI: https://doi.org/10.31857/S0015323024070034
- EDN: https://elibrary.ru/JSBJZY
- ID: 681035
Cite item
Abstract
The microtexture and microstructure of the industrial Ti–6Al–4V alloy almost in the single-phase α state, obtained using the thermomechanical treatment including the hot rolling, are studied by the X-ray diffraction analysis method and optical and transmission and scanning electron microscopy. It is established that the layered fine-grained microstructure in the cross section of the plate perpendicular to the rolling direction is characterized by selection of equiaxed globular α grains that obey Burgers orientation relationships and twinning orientations. The revealed distributions of α grains over dimensions and crystallographic orientations in the plate’s cross section are related to the peculiarities of distributions established for the plane of plate rolling. The structural mechanisms of generating the microtexture regions in the alloy are discussed.
Full Text

About the authors
V. G. Pushin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013
D. Yu. Rasposienko
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
Yu. N. Gornostyrev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Perm, 614013
N. N. Kuranova
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
V. V. Makarov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
A. E. Svirid
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
O. B. Naimark
Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013
A. N. Balakhnin
Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013
V. A. Oborin
Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences
Email: pushin@imp.uran.ru
Russian Federation, Perm, 614013
References
- Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 512 с.
- Полькин И.С. Упрочняющая термическая обработка титановых сплавов. М.: Металлургия, 1984. 96 с.
- Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
- Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС, 2009. 520 с.
- Banerjee D., Williams J.C. Perspectives of titanium science and technology // Acta Mater. 2013. V. 61. P. 844–879.
- Mosheh A.O., Mikhaylovskaya A.V., Kotov A.D., Kwame J.S., Aksenov S.A. Superplasticity of Ti-6Al-4V titanium alloy: macrostructure evolution and constitutive modelling // Materials. 2019. V. 12. P. 1756.
- Котов А.Д., Михайловская А.В., Мослех А.О., Пурсело Т.П., Просвиряков А.С., Портной В.К. Сверхпластичность ультрамелкозернистого титанового сплава Ti-4% Al-1% V-3% Mo // ФММ. 2019. Т. 120. № 1. С. 63–72.
- Bohemen S.M.C., Kamp A., Petrov R.N., Kestens L.A.I., Sietsma J. Nucleation and variant selection of secondary α-plates in β Ti alloy // Acta Mater. 2008. V. 56. P. 5907–5914.
- Glavicic M.G.G., Barta B.B.B., Jha S.K.K., Szczepanski C.Y.Y. The origin ofmicrotexture in duplex Ti-alloys // Mater. Sci. Eng. 2009. V. A513–514. P. 325–328.
- Warwick J.L.W., Jones N.G., Bantounas I., Preuss M., Dye D. In-situ observation of texture and microstructure evolution during rolling and globularisation on Ti-6Al-4V // Acta Mater. 2013. V. 61. Р. 603–1615.
- Tympel P.O., Lindley T.C., Saunders E.A., Dixon M., Dye D. Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V // Acta Mater. 2016. V. 103. P. 77–88.
- Modina I.M., Dyakonov G.S., Stotskiy A.G., Yakovleva T.V., Semenova I.P. Effect of the texture of the ultrafine-grained Ti-6Al-4V titanium alloy on impact toughness // Materials. 2023. V. 16. P. 1318.
- Bonisch M., Panigrahi A., Stoica M., Calin M., Ahrens E., Zehetbauer M., Skrotzki M., Eckert J. Giant thermal expansion and α-precipitation pathways in Ti-alloys // Nature Comm. 2017. V. 8. P. 1429.
- Evans W.J., Gostelow C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy // Metall. Trans. A. 1979. V. 10. P. 1837–1846.
- Evans W.J., Bache M.R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 // Int. J. Fatig. 1994. V. 16. P. 443–452.
- Bache M., Cope M., Davies H., Evans W., Harrison G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature // Int. J. Fatigue. 1997. V. 19(93). P. 83–88.
- Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // Int. J. Fatig. 2003. V. 25. P. 1079–1087.
- Sinha V., Mills M.J., Williams J.C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy // Metall. Mater. Trans. A. 2004. V. 35. № 10. P. 3141–3148.
- Toubal L., Bocher P., Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy // Int. J. Fatigue. 2009. V. 31. P. 601–605.
- Pilchack A.L. Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth // Scripta Mater. 2013. V. 68. P. 277–280.
- Pilchack A.L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys // Scripta Mater. 2014. V. 74. P. 68–71.
- Cuddihy M.A., Stapleton A., Williams S., Dunne F.P.E. On cold dwell facet fatigue in titanium alloy aero-engine components // Int. J. Fatig. 2017. V. 97. P. 177–189.
- Xu Y., Joseph S., Karamched P., Fox K., Rugg D., Dunne F.P.E., Dye D. Predicting dwell fatigue life in titanium alloys using modelling and experiment // Nature Comm. 2020. V. 11. P. 5868.
- Hu Z., Zhou X., Liu H., Yi D. The formation of microtextured region during thermo-mechanical processing in a near-β titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe // J. All. and Comp. 2021. V. 853. P. 156964.
- Rezaei M., Zarei-Hanzaki A., Anousheh A.S., Abedi H.R., Pahlevani F., Hossain R., Sahajwalla V., Berto F. On the damage mechanisms during compressive dwell-fatigue of β-annealed Ti-6242S alloy // Int. J. Fatig. 2021. V. 146. P. 106158.
- Britton T.B., Birosca S., Preuss M., Wilkinson A.J. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy // Scr. Mater. 2010. V. 62. № 9. P. 639–642.
- Littlewood P.D., Wilkinson A.J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading // Int. J. Fatigue. 2012. V. 43. P. 111–119.
- Kulkarni G., Hiwarkar V., Singh R. Texture evolution of Ti6Al4V during cold deformation // Int. J. Mater. Mechan. Manufacturing. 2019. V. 7. № 6. P. 250–253.
- Muth A., John R., Pilchak A., Kalidindi S.R., McDowell D.L. Analysis of Fatigue Indicator Parameters for Ti-6Al-4V microstructures using extreme value statistics in the transition fatigue regime // Int. J. Fatigue. 2021. V. 153. P. 106441.
- Oborin V., Balakhnin A., Naimark O., Gornostyrev Y., Pushin V., Kuranova N., Rasposienko D., Svirid A., Uksusnikov A., Inozemtsev A., Gabov I. Damage-failure transition in titanium alloy Ti-6Al-4V under dwell fatigue loads // Fratturaed Integrità Strutturale. 2024. V. 18. № 67. P. 217–230.
- Naimark O., Bayandin Yu., Uvarov S., Bannikova I., Saveleva N. Critical Dynamics of Damage-Failure Transition in Wide Range of Load Intensity // Acta Mechanica. 2021. V. 232. P. 1943–1959.
- Naimark O., Oborin V., Bannikov M., Ledon D. Critical Dynamics of Defects and Mechanisms of Damage-Failure Transitions in Fatigue // Materials. 2021. V. 14. № 10. P. 2554.
- Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Марченкова Е.Б., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Cтруктурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен α-фазы. Плоскость прокатки // ФММ. 2024. Т. 125. № 6. С. 686–698.
- Laine S. The role of twinning deformation of α-phase titanium. Cambridge: University of Cambridge, 2017. 224 p.
Supplementary files
