Effect of friction-stir processing on the structure microstructure and properties of a low-alloyed Cu–Cr–Zr alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of friction stir processing and subsequent aging on the microstructure and physicomechanical properties of the thermally hardened Cu–0.3% Cr–0.5% Zr alloy has been studied. Plastic deformation under friction stir processing leads to the formation of an ultrafinely grained structure with an average grain size of 0.5 μm, the decomposition of a supersaturated solid solution, and the precipitation of disperse particles in the stir zone. It has been shown that aging is accompanied by the additional precipitation of disperse particles and the development of recovery in the zone of processing. The refinement of a granular structure and the precipitation of particles leads to an increase in the strength properties and electrical conductivity in the stir zone. Aging is accompanied by a surplus increase in conductivity without any significant decrease in strength characteristics. The effect of structural evolution under friction stir processing and aging on the Cu–Cr–Zr alloy properties is discussed.

Full Text

Restricted Access

About the authors

А. I. Bodyakova

Federal State Autonomous Educational Institution of Higher Education “Belgorod State National Research University”

Author for correspondence.
Email: bodyakova-ai@yandex.ru
Russian Federation, Belgorod, 308015

E. I. Chistyukhina

Federal State Autonomous Educational Institution of Higher Education “Belgorod State National Research University”

Email: bodyakova-ai@yandex.ru
Russian Federation, Belgorod, 308015

M. S. Tkachev

Federal State Autonomous Educational Institution of Higher Education “Belgorod State National Research University”

Email: bodyakova-ai@yandex.ru
Russian Federation, Belgorod, 308015

S. S. Malopfeev

Federal State Autonomous Educational Institution of Higher Education “Belgorod State National Research University”

Email: bodyakova-ai@yandex.ru
Russian Federation, Belgorod, 308015

R. O. Kaibyshev

Federal State Autonomous Educational Institution of Higher Education “Belgorod State National Research University”

Email: bodyakova-ai@yandex.ru
Russian Federation, Belgorod, 308015

References

  1. Murashkin M.Y., Sabirov I., Sauvage X., Valiev R.Z. Nanostructured Al and Cu alloys with superior strength and electrical conductivity // J. Mater. Sci. 2016. V. 51. № 1. P. 33–49.
  2. Morozova A., Mishnev R., Belyakov A., Kaibyshev R. Microstructure and properties of fine grained Cu–Cr–Zr alloys after termo-mechanical treatments // Rev. Adv. Mater. 2018. V. 54. № 1. P. 56–92.
  3. Chembarisova R.G., Sarkeeva E.A., Alexandrov I.V., Wei W. Analysis of the effect of equal-channel angular pressing on the strength and electrical conductivity of low-alloyed alloys of the Cu–Cr–Zr system // J. Phys. Conf. Ser. 2020. V. 1431. № 1. P. 012065.
  4. Зельдович В.И., Добаткин С.В., Фролова Н.Ю., Хомская И.В., Хейфец А.Э., Шорохов Е.В., Насонов П.А. Механические свойства и структура хромоциркониевой бронзы после динамического канально-углового прессования и последующего старения // ФММ. 2016. Т. 117. № . 1. С. 79–79.
  5. Purcek G., Yanar H., Demirtas M., Alemdag Y., Shangina D.V., Dobatkin S.V. Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging // Mater. Sci. Eng. A. 2016. V. 649. P. 114–122.
  6. Мартыненко Н.С., Рыбальченко О.В., Бодякова А.И., Просвирнин Д.В., Рыбальченко Г.В., Лукьянова Е.А., Юсупов В.С., Добаткин С.В. Влияние ротационной ковки и последующего старения на структуру и механические свойства сплава Cu-0.5%Cr-0.08%Zr // VIII Всероссийская конференция по наноматериалам: Сборник материалов конференции. 2023. С. 210–211.
  7. Islamgaliev R.K., Nesterov K.M., Bourgon J., Champion Y., Valiev R.Z. Nanostructured Cu–Cr alloy with high strength and electrical conductivity // J. Appl. Phys. 2014. V. 115. № 19. P. 194301.
  8. Aksenov D.A., Faizova S.N., Faizov I.A. Hardening mechanisms contribution at nonmonotonic change of properties in the Cu-0.6 Cr-0.1 Zr alloy at high pressure torsion // Frontier Mater. Techn. 2022. № 3–1. P. 23–32.
  9. Miao Y., Gan C., Jin W., Wang M., Chen Y., Liu Z., Zhang Z. Effect of aging temperature on microstructure and softening property of the Cu-Cr–Zr–Nb alloy // J. Alloys Compd. 2024. V. 983. P. 173818.
  10. Xin Z., Bin Jiang Y., Wu Z.X., Tan F., Qiu W.T., Li J.H., Xia Z.R., Dai W., Li L.H., Xiao Z. Effect of cryogenic rolling and multistage thermo-mechanical treatment on the microstructure and properties of the Cu-0.4Cr-0.39Zn-0.1Mg-0.07Zr alloy // Mater. Charact. 2024. V. 207. P. 113557.
  11. Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Temple S.P., Dawes C.J. Improvements relating to friction welding. GB Patent Application № 9125978.8. 1991.
  12. Arora A., Zhang Z., De A., DebRoy T. Strains and strain rates during friction stir welding // Scr. Mater. 2009. V. 61. № 9. P. 863–866.
  13. Mishra R.S., Ma Z.Y. Friction stir welding and processing // Mater. Sci. Eng.: Rep. 2005. V. 50. № 1–2. P. 1–78.
  14. Макаров А.В., Лежнин Н.В., Котельников А.Б., Вопнерук А.А., Коробов Ю.С., Валиуллин А.И., Волкова Е.Г. Восстановление стенок кристаллизаторов машин непрерывного литья заготовок из хромоциркониевой бронзы методом многопроходной сварки трением с перемешиванием // Изв. ВУЗов. Цветная металлургия. 2024. № 6. С. 66–83.
  15. Лежнин Н.В., Макаров А.В., Валиуллин А.И., Котельников А.Б., Вопнерук А.А. Применение аддитивной технологии на основе сварки трением с перемешиванием для восстановления исходной геометрии изношенных плит кристаллизаторов МНЛЗ // Тяжелое машиностроение. 2023. Т. 12. С. 26–33.
  16. Sakthivel T., Mukhopadhyay J. Microstructure and mechanical properties of friction stir welded copper // J. Mater. Sci. 2007. V. 42. № 19. P. 8126–8129.
  17. Shen J.J., Liu H.J., Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper // Mater. Des. 2010. V. 31. № 8. P. 3937–3942.
  18. Wang Y.D., Liu M., Yu B.H., Wu L.H., Xue P., Ni D.R., Ma Z.Y. Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu–Cr–Zr alloy via one-step friction stir processing // J. Mater. Process. Technol. 2021. V. 288. P. 116880.
  19. Bodyakova A., Mishnev R., Belyakov A., Kaibyshev R. Effect of chromium content on precipitation in Cu–Cr–Zr alloys // J. Mater. Sci. 2022. V. 57. № 27. P. 13043–13059.
  20. Фролова Н.Ю., Зельдович В.И., Хомская И.В., Хейфец А.Э., Шорохов Е.В. Влияние старения и деформации на структуру и механические свойства хромоциркониевой бронзы // Diagnostics, Resource and Mechanics of Materials and Structures. 2015. № 5. С. 99–108.
  21. Jha K., Kumar S., Nachiket K., Bhanumurthy K., Dey G.K. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates // Metall. Mater. A. Trans. 2018. V. 49. P. 223–234.
  22. Surekha K., Els-Botes A. Development of high strength, high conductivity copper by friction stir processing // Mater. Des. 2011. V. 32. № 2. P. 911–916.
  23. Wang Y.D., Xue P., Liu F.C., Wu L.H., Zhang H., Zhang Z., Ni D.R., Xiao B.L., Ma Z.Y. Influence of processing innovations on joint strength improvements in friction stir welded high strength copper alloys // Mater. Sci. Eng. A. 2023. V. 872. P. 144983.
  24. Naik R.B., Reddy K.V., Reddy G.M., Kumar R.A. Development of high strength and high electrical conductivity Cu–Cr–Zr alloy through friction stir processing // Fusion Eng. Des. 2020. V. 161. P. 111962.
  25. Shangina D.V., Bochvar N.R., Morozova A.I., Belyakov A.N., Kaibyshev R.O., Dobatkin S.V. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu–Cr–Zr alloys after high pressure torsion // Mater. Lett. 2017. V. 199. P. 46–49.
  26. Calcagnotto M., Ponge D., Demir E., Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD // Mater. Sci. Eng. A. 2010. V. 527. № 10–11. P. 2738–2746.
  27. Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena. Elsevier. 2012. 635 p.
  28. Морозова А.И., Беляков А.Н., Кайбышев Р.О. Влияние температуры деформации на формирование ультрамелкозернистой структуры в термоупрочняемом Cu–Cr–Zr сплаве // ФММ. 2021. Т. 122. № 1. С. 67–73.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) — the initial structure of the Cu–Cr–Zr alloy after treatment with a supersaturated solid solution; (b) — the thermal cycle of the OTP process; (c) — the scheme of cutting samples for research. Small—angle borders from 2° to 15° are marked with green lines, large—angle borders over 15° with blue lines, and twin S3 borders with red lines (on line). Coordinate system: NO — the direction of processing; PN — the transverse direction; NN — the direction of the normal to the plane of the workpieces being processed.

Download (389KB)
3. Fig. 2. Optical metallography of Cu–Cr–Zr alloy after OTP: (a) general view of the processing zone; (b) and (c) mixing zone (ZP); (d) thermomechanical influence zone (TMV) and (e) thermal influence zone (ZTV). In the inserts in Fig. 2b, e are histograms of particle size distribution. Coordinate system: NO — the direction of processing; PN — the transverse direction; NN — the direction of the normal to the plane of the workpieces being processed.

Download (1MB)
4. Fig. 3. Microstructure of Cu–Cr–Zr alloy after OTP (a-c) and aging (d–e): distribution of crystallite boundaries in the mixing zone (a, d) and the thermomechanical influence zone (b, e) with histograms of grain size distribution and crystallite misorientation angles, thin the structure in the mixing zone (b, e) with histograms of particle size distribution. Small—angle borders from 2° to 15° are marked with green lines, large—angle borders over 15° with blue lines, and twin S3 borders with red lines (on line). Coordinate system: BUT — processing direction; PN is the transverse direction; NN is the direction of the normal to the plane of the workpieces being processed.

Download (1MB)
5. Fig. 4. Hardness (dots) and electrical conductivity (triangles) of the Cu–Cr–Zr alloy after OTP (a) and aging (b). The lines indicate the magnitude of the properties of the Cu–Cr–Zr alloy after quenching or aging. CO is the withdrawal side, CH is the incursion side.

Download (264KB)
6. Fig. 5. Stress—elongation curves obtained during testing of Cu–Cr–Zr alloy after OTP (a) and aging (b) for samples containing the base material (solid lines) and samples cut from the mixing zone (dotted lines), with maps of the distribution of the true deformations in the working part of the sample. The points on the curves mark the areas for which the strain distribution maps are presented. CO is the withdrawal side, CH is the incursion side. Coordinate system: NO — the direction of processing; PN — the transverse direction; NN — the direction of the normal to the plane of the workpieces being processed.

Download (794KB)