Analysis of thermal stability of amorphous phases in Al87Ni8Gd5 and Al87Ni8Y5 metallic alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Differential scanning calorimetry and X-ray diffraction analysis were used to study the kinetics of the formation of nanophase composites and the evolution of their structural parameters in the Al87Ni8Gd5 and Al87Ni8Y5 metallic glasses with different thermal stability during heating at a rate of 0.083 K/s. Using an original and a number of available models, quantitative changes in the nucleation and growth rates of Al nanocrystals and as well as the kinetic (diffusion coefficients) and thermodynamic (work for the formation of critical nuclei, difference of thermodynamic potentials of amorphous and crystalline phases, and specific free energy of nucleus/matrix phase interface) parameters were determined. A comparative analysis allowed to find that the main reason for the higher thermal stability of the Al87Ni8Y5 glass as compared to that of the Al87Ni8Gd5 glass is the lower diffusion mobility of atoms.

Full Text

Restricted Access

About the authors

E. A. Sviridova

Galkin Donetsk Institute for Physics and Engineering; Donbas National Academy of Civil Engineering and Architecture (DonNACEA)

Author for correspondence.
Email: ksvir@list.ru
Russian Federation, Donetsk, 283048; Makeevka, 286123

S. V. Vasiliev

Galkin Donetsk Institute for Physics and Engineering; Donbas National Academy of Civil Engineering and Architecture (DonNACEA)

Email: ksvir@list.ru
Russian Federation, Donetsk, 283048; Makeevka, 286123

V. I. Tkatch

Galkin Donetsk Institute for Physics and Engineering

Email: ksvir@list.ru
Russian Federation, Donetsk, 283048

References

  1. Klement W., Willens R.H., Duwez P. Non-crystalline structure in solidified gold-silicon alloys // Nature. 1960. V. 187. P. 869–870.
  2. Warlimont H. Amorphous metals driving materials and process innovations // Mater. Sci. Eng. 2001. V. A304–306. P. 61–67.
  3. McHenry M.E., Willard M.A., Laughlin D.E. Amorphous and nanocrystalline materials for applications as soft magnets // Progr. Mater. Sci. 1999. V. 44. P. 291–433.
  4. Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems // Progr. Mater. Sci. 1998. V. 43. P. 365–520.
  5. Дональд И.В., Дэвис Х.А. Образование и стабильность некоторых аморфных сплавов на основе железа и никеля / В кн. Быстрозакаленные металлы. М.: Металлургия, 1983. С. 139–147.
  6. Абросимова Г.Е., Аронин А.С. Влияние концентрации редкоземельного элемента на параметры наноструктуры в сплавах на основе алюминия // ФТТ. 2009. Т. 51. № 9. С. 1665–1671.
  7. Popov V.V., Tkatch V.I., Rassolov S.G., Aronin A.S. Effect of replacement of Ni by Co on thermal stability of Fe40Co40P14B6 metallic glass // J. Non-Cryst. Sol. 2010. V. 356. P. 1344–1348.
  8. Vasiliev S.V., Svyrydova K.A., Vasylyeva N.V., Tkatch V.I. Description of non-isothermal crystallization kinetics of Fe48Co32P14B6 metallic glass using the isothermal analysis data // Acta Mater. 2023. V. 244. art. 118558.
  9. Hono K., Zhang Y., Tsai A.P., Inoue A., Sakurai T. Solute partitioning in partially crystallized Al-Ni-Ce(–Cu) metallic glasses // Scr. Metall. Mater. 1995. V. 32. № 2. Р. 191–196.
  10. Allen D.R., Foley J.C., Perepezko J.H. Nanocrystal development during primary crystallization of amorphous alloys // Acta Mater. 1998. V. 46. № 2. Р. 431–440.
  11. Ham F.S. Theory of diffusion-limited precipitation // J. Phys. Chem. Sol. 1958. V. 6. P. 335–351.
  12. Yi J.J., Kong L.T., Ferry M., Tang C.G., Sha G., Li J.F. Origin of the separated α-Al nanocrystallization with Si added to Al86Ni9La5 amorphous alloy // Mater. Characteriz. 2021. V. 178. art. 111199.
  13. Tkatch V.I., Rassolov S.G., Moiseeva T.N., Popov V.V. Analytical description of isothermal primary crystallization of glasses: Fe85B15 // J. Non-Cryst. Sol. 2005. V. 351. P. 1658–1664.
  14. Rassolov S.G., Tkatch V.I., Maslov V.V., Maksimov V.V., Svyrydova K.A., Zhikharev I.V. Nanocrystallization of Al-based glasses via nucleation and growth under "soft impingement" conditions // Phys. Stat. Sol. C. 2010. V. 7. № 5. P. 1340–1343.
  15. Antonowicz J. Time-resolved X-ray diffraction study of nanocrystallization in Al-based metallic glasses // J. Non-Cryst. Sol. 2005. V. 351. P. 2383–2387.
  16. Blazquez J.S., Millan M., Conde C.F., Conde A. Nucleation rate and nanocrystallization of Co60-(Fe, Mn)18-Nb6-B16 amorphous alloys in the frame of instantaneous growth approximation // J. Alloys Comp. 2010. V. 505. P. 91–95.
  17. Рассолов С.Г., Ткач В.И., Максимов В.В., Коваленко О.В., Моисеева Т.Н., Попов В.В. Зарождение нанокристаллов Al в аморфном сплаве Al87Ni8Y5 при нагреве с постоянной скоростью // Физика и техника высоких давлений. 2013. Т. 23. № 1. С. 18–29.
  18. Tkatch V.I., Rassolov S.G., Nosenko V.K., Maksimov V.V., Moiseeva T.N., Svyrydova K.A. Estimation of diffusivity governing primary nanocrystallization and its relation to thermal stability of amorphous phases // J. Non-Cryst. Sol. 2012. V. 358. Р. 2727–2733.
  19. Маслов В.В., Ткач В.И., Носенко В.К., Рассолов С.Г., Попов В.В., Максимов В.В., Сегида Е.С. Микротвердость и структура нанофазных композитов, формирующихся при нагреве аморфных сплавов Al87Ni8RE (RE = Y, Gd) и Al86Ni8–xCoxGd6 (x = 2, 6) // Металлофиз. новейшие технол. 2011. Т. 33. № 5. С. 661–672.
  20. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. М.: МИСИС, 2002. 360 с.
  21. Wesseling P., Ko B.C., Lewandowski J.J. Quantitative evaluation of α-Al nano-particles in amorphous Al87Ni7Gd6 – comparison of XRD, DSC, and TEM // Scripta Mater. 2003. V. 48. Р. 1537–1541.
  22. Yang H.W., Wen J., Quan M.X., Wang J.Q. Evaluation of the volume fraction of nanocrystals devitrified in Al-based amorphous alloys // J. Non-Cryst. Sol. 2009. V. 355. P. 235–238.
  23. Duan T., Shen Y., Imhoff S.D., Yi F., Voyles P.M., Perepezko J.H. Nucleation kinetics model for primary crystallization in Al–Y–Fe metallic glass // J. Chem. Phys. 2023. V. 158. art. 064504.
  24. Kelton K.F. Crystal nucleation in liquids and glasses / Solid State Phys. – Advances in Research and Application. Acad. Press. New York. 1991. V. 45. P. 75–177.
  25. Turnbull D., Fisher J.C. Rate of nucleation in condensed systems // J. Chem. Phys. 1949. V. 17. № 1. P. 71–73.
  26. Castellero A., Battezzati L. Thermophysical parameters governing the glass formation and crystallization of CuZr // J. Non-Cryst. Sol. 2023. V. 610. art. 122311.
  27. Thompson C.V., Spaepen F. On the approximation of the free energy change on crystallization // Acta Metal. 1979. V. 22. № 12. Р. 1855–1859.
  28. Ji X., Pan Y. Gibbs free energy difference in metallic glass forming liquids // J. Non-Cryst. Sol. 2007. V. 353. Р. 2443–2446.
  29. Thompson C.V., Spaepen F. Homogeneous crystal nucleation in binary metallic melts // Acta Metall. 1983. V. 31. № 12. P. 2021–2027.
  30. Свойства элементов / Справочник. Под ред. Г.В. Самсонова. ч. 1. М.: Металлургия, 1976. 600 с.
  31. Spaepen F. Homogeneous nucleation and the temperature dependence of the crystal-melt interfacial tension // Solid State Phys. – Advances in Research and Application. Acad. Press. New York. 1994. V. 47. P. 1–32.
  32. Battezzati L. Thermodynamic quantities in nucleation // Mater. Sci. Eng. A. 2001. V. 304–306. P. 103–107.
  33. Jian Z., Li N., Zhu M., Chen J., Chang F., Jie W. Temperature dependence of the crystal-melt interfacial energy of metals // Acta Mater. 2012. V. 60. P. 3590–3603.
  34. Greer A.L. Crystallization of metallic glasses // Mater. Sci. Eng. A. 1994. V. 179/180. P. 41–45.
  35. Jiang X.Y., Zhong Z.C., Greer A.L. Particle-size effects in primary crystallization of amorphous Al–Ni–Y alloys // Mater. Sci. Eng. A. 1997. V. 226–228. P. 789–793.
  36. Kelton K.F., Croat T.K., Gangopadhyay A.K., Xing L.-Q., Greer A.L., Weyland M., Li X., Rajan K. Mechanisms for nanocrystals formation in metallic alloys // J. Non-Cryst. Sol. 2003. V. 317. P. 71–77.
  37. Schmelzer J.W.P., Tropin T.V., Fokin V.M., Abyzov A.S., Zanotto E.D. Effects of glass transition and structural relaxation on crystal nucleation: Theoretical description and model analysis // Entropy. 2020. V. 22. art. 1098.
  38. Свиридова Е.А., Васильев С.В., Абросимова Г.Е., Ткач В.И. Анализ процесса зарождения нанокристаллов Al в металлическом стекле AlNiGd в процессе отжига и интенсивной пластической деформации // ЖТФ. 2024. Т. 94. № 2. С. 216–222.
  39. Henits P., Revesz A., Varga L.K., Kovacz Zs. The evolution of the microstructure in amorphous Al85Ce8Ni5Co2 alloy during heat treatment and severe plastic deformation: A comparative study // Intermetallics. 2011. V. 19. Р. 267–275.
  40. Gunduz M., Hunt J.D. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems // Acta Metall. 1985. V. 33. № 9. P. 1651–1672.
  41. Volin T.E., Baluffi R.W. Annealing kinetics and the self-diffusion coefficient in aluminum // Phys. Stat. Sol. 1968. V. 25. P. 163–173.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragments of DSC thermograms in the temperature ranges of the first stage of crystallization of metallic glasses Al87Ni8Gd5 (solid line) and Al87Ni8Y5 (dashed line) during heating at a rate of 0.083 K/s.

Download (17KB)
3. Fig. 2. Diffraction patterns of rapidly cooled Al87Ni8Gd5 and Al87Ni8Y5 alloy tapes subjected to heating to temperatures of nanocrystallization completion (527 and 536 K, respectively). The dashed lines show the scheme of profile decomposition into amorphous and crystalline components.

Download (18KB)
4. Fig. 3. Changes in the average sizes of Al nanocrystals in Al87Ni8Gd5 (●) and Al87Ni8Y5 (■) glasses during heating at a rate of 0.083 K/s. Points are the experiment, lines are the calculations according to equation (6).

Download (15KB)
5. Fig. 4. Changes in the fraction of the nanocrystalline phase in Al87Ni8Gd5 (●) and Al87Ni8Y5 (■) glasses during heating at a rate of 0.083 K/s. Solid symbols indicate X-ray estimates, hollow symbols indicate normalized DSC data.

Download (16KB)
6. Fig. 5. Temperature dependences of effective diffusion coefficients controlling the growth of nanocrystals in Al87Ni8Gd5 (solid curve) and Al87Ni8Y5 (dashed curve) glasses. The vertical segments show the temperatures of the onset of nanocrystallization.

Download (15KB)
7. Fig. 6. Determined from experimental data Jexp(T) (points) and calculated changes in the nucleation rate Jst of Al nanocrystals in Al87Ni8Gd5 (○ and solid line) and Al87Ni8Y5 (□ and dashed line) glasses upon heating at a rate of 5 K/min.

Download (19KB)
8. Fig. 7. Changes in the thermodynamic driving force of Al nucleation in amorphous alloys Al87Ni8Gd5 (solid lines) and Al87Ni8Y5 (dashed lines). The vertical corresponding lines show the temperatures Tons and Tend at a heating rate of 0.083 K/s.

Download (18KB)
9. Fig. 8. Changes in the work of formation of critical nuclei, estimated using relation (11) (symbols) and calculated using equation (7), in Al87Ni8Gd5 (○ and solid lines) and Al87Ni8Y5 (□ and dashed lines) glasses upon heating at a rate of 0.083 K/s. The vertical lines show the temperatures of the main maxima of Jexp (Fig. 6).

Download (17KB)
10. Fig. 9. Temperature dependences of the specific free energy of the interface between the crystalline and amorphous (liquid) phases in Al-based alloys: 1 and 2 – Al87Ni8Gd5 and Al87Ni8Y5, respectively, the results of this work, 3 – Al87Ni8Gd5, deformation-induced crystallization [38] taking into account the pressure, 4 – Al85Ce8Ni5Co2 [39], calculation using the approximate model [32]. The asterisk indicates the experimentally estimated value for pure Al [24].

Download (18KB)
11. Fig. 10. Changes in the growth rate of Al nanocrystals in Al87Ni8Gd5 (solid line) and Al87Ni8Y5 (dashed line) glasses upon heating at a rate of 0.083 K/s. The vertical lines 1 and 2 indicate the crystallization onset temperatures.

Download (16KB)