Control of magnetoelastic properties of Fe−Ga alloys using thermomechanical treatment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of thermomechanical treatment (TMechT), which includes annealing and cooling of the alloy under the external compressive load along the direction <001>, to magnetostriction of the Fe−18 at.%Ga alloy, has been investigated. Field dependencies of the longitudinal λ100 and transverse λ100 magnetostriction are measured after TMechT with compressing stresses of 0–8 MPa. It is shown that as a result of TMechT already with small compressive stresses ~1 MPa, a significant change in the magnetostrictive behavior of the monocrystalline alloy occurs. The longitudinal component of magnetostriction λ100 increases, and the transverse λ100 (by module) is reduced, while the complete magnetostrition λs=λ100λ100 practically does not change. The maximum value of the saturation magnetostriction λ100  is observed after TMechT under stress of 2 MPa − about 280 ppm. After TMechT at higher stresses λ100  it is at the level of 200 ppm, and λ100 decreases and reaches zero at 6 MPa. The observed effects of TMechO are explained by the directional ordering the Ga−Ga pairs in the BCC Fe−Ga alloy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Kochurin

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: nershov@imp.uran.ru
Ресей, Ekaterinburg, 620108

V. Lukshina

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: nershov@imp.uran.ru
Ekaterinburg, 620108

A. Timofeeva

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: nershov@imp.uran.ru
Ekaterinburg, 620108

D. Shishkin

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: nershov@imp.uran.ru
Ресей, Ekaterinburg, 620108; Ekaterinburg, 620002

M. Matyunina

Chelyabinsk State University

Email: nershov@imp.uran.ru
Ресей, Chelyabinsk, 454001

N. Ershov

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nershov@imp.uran.ru
Ресей, Ekaterinburg, 620108

Yu. Gornostyrev

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: nershov@imp.uran.ru
Ресей, Ekaterinburg, 620108

Әдебиет тізімі

  1. Clark A.E., Restorff J.B., Wun-Fogle M., Lograsso T.A., Schlagel D.L. Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys // IEEE Trans. Magn. 2000. V. 36. No. 5. P. 3238–3240.
  2. Cullen J.R., Clark A.E., Wun-Fogle M., Restorff J.B., Lograsso T.A. Magnetoelasticity of Fe–Ga and Fe–Al alloys // J. Magn. Magn. Mater. 2001. V. 226–230. Part 1. P. 948–949.
  3. Restorff J.B., Wun-Fogle M., Hathaway K.B., Clark A.E., Lograsso T.A., Petculescu G. Tetragonal magnetostriction and– magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al and Fe–Ga–Ge alloys // J. Appl. Phys. 2012. V. 111. P. 023905(1–12).
  4. Atulasimha J., Flatau A.B. A review of magnetostrictive iron–gallium alloys // Smart Mater. Struct. 2011. V. 20. No. 4. P. 043001(1–15).
  5. Wu D., Xing Q., McCallum R.W., Lograsso T.A. Magnetostriction of iron-germanium single crystals // J. Appl. Phys. 2008. V. 103. P. 07B307(1–3).
  6. Wang H., Zhang Y.N., Wu R.Q., Sun L.Z., Xu D.S., Zhang Z.D. Understanding strong magnetostriction in Fe100-xGax alloys // Sci. Rep. 2013. V. 3. P. 3521(1–5).
  7. Cao J.X., Zhang Y.N., Ouyang W.J., Wu R.Q. Large magnetostriction of Fe1–xGex and its electronic origin: Density functional study // Phys. Rev. B. 2009. V. 80. No. 10. P. 104414(1–5).
  8. Wu R.Q. Origin of large magnetostriction in FeGa alloys // J. Appl. Phys. 2002. V. 91. No. 10. P. 7358–7360.
  9. Черненков Ю.П., Ершов Н.В., Горностырев Ю.Н., Лукшина В.А., Смирнов О.П., Шишкин Д.А. Рентгеноструктурный анализ ближнего порядка в твердых растворах железо-галлий // ФММ. 2022. Т. 123. № 10. С. 1054−1062.
  10. Лесник А.Г. Наведенная магнитная анизотропия. Киев: Наукова думка, 1976. 163 с.
  11. Sugihara M. On the effect of heat treatment in a magnetic field on magnetic properties of iron-aluminium alloys // J. Phys. Soc. Jpn. 1969. V. 15. P. 1456−1460.
  12. Steinert J. Induced Uniaxial Magnetic Anisotropy of Fe-Al Alloys at Low Concentrations // Phys. Stat. Sol. 1967. V. 21. K13–K15.
  13. Forsch K. Diffusionsanisotropie in Eisen-Siliziuin-Legierungen // Phys. Stat. Sol. 1970. V. 42. P. 329‒344.
  14. Neél L. Anisotropie magnétique superficielle et surstructures d’orientation // J. Phys.-Paris. 1954. V. 15. No. 4. P. 225–239.
  15. Taniguchi S., Yamamoto M. A note on a theory of the uniaxial ferromagnetic anisotropy induced by cold work or by magnetic annealing in cubic solid solutions // Sci. rep. Res. Tohoku A. 1954. V. 6. P. 330–332.
  16. Chernenkov Yu.P., Ershov N.V., Lukshina V.A., Fedorov V.I., Sokolov B.K. An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe–Si alloys with induced magnetic anisotropy // Physica B: Condensed Matter. 2007. V. 396. No. 1–2. P. 220–230.
  17. Лукшина В.А., Шишкин Д.А., Кузнецов А.Р., Ершов H.В., Горностырев Ю.Н. Влияние отжига в постоянном магнитном поле на магнитные свойства сплавов железо–галлий // ФТТ. 2020. Т. 62. № 10. С. 1578 – 1586.
  18. Черненков Ю.П., Смирнов О.П., Лукшина В.А., Тимофеева А.В., Петрик М.В., Кузнецов А.Р., Ершов Н.В., Горностырев Ю.Н., Шишкин Д.А. Ближний порядок и его устойчивость в магнитомягком железогаллиевом сплаве // ФММ. 2024. Т. 125. № 1. С. 86–95.
  19. Restorff J.B., Wun-Fogle M., Clark A.E., Hathaway K.B. Induced Magnetic Anisotropy in Stress-Annealed Galfenol Alloys // IEEE Trans. on Magn. 2006. V. 42. No. 10. P. 3087–3089.
  20. Jones N.J., Restorff J.B., Wun-Fogle M., Clark A.E. Magnetostriction and magnetization of tension annealed rods of Fe82Ga18 // J. Appl. Phys. 2010. V. 107. P. 09A915(1–3).
  21. Wun-Fogle M., Restorff J.B., Clark A.E. Magnetostriction of Stress Annealed Fe−Ga−Al and Fe–Ga Alloys Under Compressive and Tensile Stress // P. Soc. Photo.-Opt. Ins. 2004. V. 5387. P. 468–475.
  22. Драгошанский Ю.Н., Шур Я.С. О формировании доменной структуры кристаллов кремнистого железа // ФММ. 1966. Т. 21. № 5. С. 678−687.
  23. Драгошанский Ю.Н. Формирование доменной структуры в магнитоодноосных и магнитотрехосных кристаллах / Диссертация на соискание ученой степени канд. физ.-мат. наук. Свердловск, 1968. 161 с.
  24. Зайкова В.А., Старцева И.Е., Филиппов Б.Н. Доменная структура и магнитные свойства электротехнических сталей. М.: Наука, 1992. 272 с.
  25. Hubert A., Schafer R. Magnetic Domains. The Analysis of Magnetic Microstructures. New York: Springer Berlin Heidelberg, Corrected, 3rd Printing, 2009. 707 p.
  26. Черненков Ю.П., Ершов Н.В., Горностырев Ю.Н., Лукшина В.А., Тимофеева А.В., Шишкин Д.А. Ближний порядок в магнитомягком сплаве Fе–9 ат.% Ga в зависимости от условий термической обработки // ФММ. 2025. T. 126. № 3. С. 316–327.
  27. Yan K., Xu Y., Niu J., Wu Y., Li Y., Gault B., Zhao S. Wang X., Li Y., Wang J., Skokov K.P., Gutfleisch O., Wu H., Jiang D., He Y., Jiang C. Unraveling the origin of local chemical ordering in Fe-based solid-solutions // Acta Mater. 2024. V. 264. P. 119583(1–14).
  28. Sun M., Jiang W., Ke Y., Ge B., Wang X., Fang Q. Tetragonal dipole dominated Zener relaxation in BCC-structured Fe−17at.% Ga single crystals // Acta Mater. 2023. V. 258. P. 119245(1–11).
  29. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. P. 11169–11186.
  30. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmetented-wave method // Phys. Rev. B. 1999. V. 59. P. 1758–1775.
  31. Matyunina M.V., Zagrebin M.A., Sokolovskiy V.V., Buchelnikov V.D. Magnetostriction of Fe100−xGax alloys from first principles calculations // J. Magn. Magn. Mater. 2019. V. 476. P. 120–123.
  32. Dudarev S.L., Ma P-W. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals // Phys. Rev. Mater. 2018. V. 2. P. 033602(1–11).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Field dependences of the magnetostriction coefficients (curves 1, 3) and (curves 2, 4) of the Fe–18 at.% Ga alloy sample in the initial state after annealing in vacuum (curves 1, 2) and after TMT at a stress of 1 MPa (curves 3, 4).

Жүктеу (81KB)
3. Fig. 2. The same as in Fig. 1 for a sample after heat treatment without load (curves 1) and after TMT at compressive stresses of 1, 2, 3, 4, 6 and 8 MPa (curves 2, 3, 4, 5, 6 and 7, respectively).

Жүктеу (158KB)
4. Fig. 3. The influence of the magnitude of compressive stress during TME on the average values ​​of magnetostriction coefficients in a longitudinal ( , curve 1) and transverse ( , curve 2) magnetic field of 2 kOe, as well as their range ( , curve 3).

Жүктеу (64KB)