Intratetrad mating: 60 years later
- Authors: Zakharov I.A.1
-
Affiliations:
- Vavilov Institute of General Genetics of the Russian Academy of Sciences
- Issue: Vol 61, No 6 (2025)
- Pages: 27-36
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://jdigitaldiagnostics.com/0016-6758/article/view/686976
- DOI: https://doi.org/10.31857/S0016675825060024
- EDN: https://elibrary.ru/SWYGJA
- ID: 686976
Cite item
Abstract
The article describes the history of the discovery and study of intratetrad mating as a form of closely related crosses in fungi. The results of studying the prevalence and genetic features of this phenomenon in phytopathogenic basidiomycete Microbotryum violaceum and yeast (Saccharomyces sp., Saccharomycodes ludwigii) are presented. The evolutionary and genetic consequences of intratetrad mating are considered.
Full Text

About the authors
I. A. Zakharov
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Author for correspondence.
Email: iaz34@mail.ru
Russian Federation, Moscow, 119991
References
- Захаров И.А. Генетические последствия внутритетрадного спаривания аскоспор у дрожжей // Вестник Ленинградского ун-та. 1965. № 9. С. 98–105.
- Захаров И.А. Гомозиготизация при внутритетрадном и внутриоктадном оплодотворении у грибов // Генетика. 1968. Т. 4. С. 98–105.
- Oudemans P.V., Alexander H.M., Antonovics J. et al. The distribution of mating-type bias in natural population of the anther-smut Ustilago violacea on Silene alba in Virginia // Mycologia. 1998. V. 90. P. 372–381.
- Antonovics J., O’Keefe K., Hood M.E. Theoretical population genetics of mating-type linked haplo-lethal alleles // Int. J. Plant Sci. 1998. V. 159. P. 192–198.
- Захаров И.А. Внутритетрадное спаривание и его генетико-эволюционные последствия // Генетика. 2005. Т. 41. С. 508–519.
- Emerson E. Meiotic recombination in fungi with special reference to tetrad analysis // Methodology in Basic Genetics. San Francisco: Holden-Day. 1963. P. 167.
- Захаров И.А., Мацелюх Б.П. Генетические карты микроорганизмов. Киев: Наук. Думка, 1986. 250 с.
- Захаров И.А. Некоторые закономерности расположения генов в хромосомах эукариот // Генетика. 1986. Т. 22. С. 2620–2624.
- Hood M.E., Antonovics J. Two-celled promycelia and mating type segregation in Ustilago violacea (= Microbotryum violaceum) // Int. J. Plant Sci. 1998. V. 159. P. 199–205.
- Giraud T., Jonot O., Shykoff J.A. Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations // Int. J. Plant Sci. 2005. V. 166. P. 649–657.
- Thomas A., Shykoff J., Jonot O., Giraud T. Sex-ratio bias in populations of the phytopathogenic fungus Microbotryum violaceum from several host species // Int. J. Plant Sci. 2003. V. 164. P. 641–647.
- Hood M.E., Antonovics J. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbobotryum violaceum (= Ustilago violacea) // Heredity. 2000. V. 85. P. 231–241.
- Hood M.E., Antonovics J. Mating within the meiotic tetrad and the maintenance of genomic heterozygosity // Genetics. 2004. V. 166. P. 1751–1759.
- Antonovics J., Abrams J.Y. Intratetrad mating and the evolution of linkage relationships // Evolution. 2004. V. 58. P. 702–709.
- Hood M.E. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum // Genetics. 2002. V. 160. P. 457–461.
- Hood M.E., Petit E., Giraud T. Extensive divergence between mating-type chromosomes of the anther-smut fungus // Genetics. 2013. V. 193. P. 309–315. https://doi.org/10.1534/genetics.112.146266
- Захаров И.А., Юрченко Л.В., Яровой Б.Ф. Цитодукция – автономный перенос цитоплазматических наследственных факторов при спаривании клеток дрожжей // Генетика. 1969. Т. 5. С. 136–141.
- Guillermon M.A. Recherches sur la germination des spores et la conjugaison chez les levures // Rev. Genet. Bot. 1905. V. 509. P. 337–376.
- Murphy H.A., Zeyl C.W. Yeast sex: Surprisingly high rates of outcrossing between asci // PLoS One. 2010. V. 5(5). https://doi.org/10.1371/journal.pone.0010461
- McClure A.W., Jacobs K.C., Zyla T.R. et al. Mating in wild yeast: Delayed interest in sex after spore germination // Mol. Biol. Cell. 2018. V. 29. P. 3119–3127. https://doi.org/10.1091/mbc.E18-08-0528
- James A.P. The spectrum of severity of mutant effects. Haploid effects in yeast // Genetics. 1959. V. 44. P. 1309–1324.
- Инге-Вечтомов С.Г. Новые генетические линии дрожжей Saccharomyces cerevisiae // Вестн. Ленингр. ун-та. 1963. № 21. С. 117.
- Taxis C., Keller P., Kavagiou Z. et al. Spore number control and breeding in Saccharomyces cerevisiae: А key role for a self-organizing system // J. Cell Biol. 2005. V. 171. P. 627–640. https://doi.org/10.1083/jcb.200507168
- Johnson L.J., Koufopanou V., Goddard M.R. et al. Population genetics of the wild yeast Saccharomyces paradoxus // Genetics. 2004. V . 166. C. 43–52. https://doi.org/10.1534/genetics.166.1.43
- Tsai I.J., Bensasson D., Burt A. et al. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle // Proc. Natl Ac. Sci. 2008. V. 105. P. 4957–4962. https://doi.org/10.1073pnas.0707314105
- Ezov T.K., Chang S.-L., Frenkel Z. et al. Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction // Mol. Ecol. 2010. V. 19. P. 121–131. https://doi.org/10.1111/j.1365-294X.2009.04436.x
- Miller E.L., Greig D. Spore germination determines yeast inbreeding according to fitness in the local environment // Am. Nat. 2015. V. 185. P. 291–301. https://doi.org/10.5061/dryad.r0g9m
- Nishant K.T., Wei W., Mancera E. et al. The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis // PLoS Genet. 2010. V. 6(9). https://doi.org/10.1371/journal.pgen.1001109
- Reuter M., Bell G., Greig D. Increased outbreeding in yeast in response to dispersal by an insect vector // Curr. Biol. 2007. V. 17. P. R81–R83. https://doi.org/10.1016/j.cub.2006.11.059
- Papaioannou I.A., Dutreux F., Peltie F.A. et al. Sex without crossing over in the yeast Saccharomycodes ludwigii // Genome Biology. 2021. V. 22. P. 303. https://doi.org/10.1186/s13059-021-02521-w
- Miyakawa I., Nakahara A., Ito K. Morphology of mitochondrial nucleoids, mitochondria, and nuclei during meiosis and sporulation of the yeast Saccharomycodes ludwigii // J. Gen. Appl. Microbiol. 2012. V. 58. P. 43–51.
- Miyakawa I., Matsuo E., Yagi R. et al. Isolation of interspore bridges from the budding yeast Saccharomycodes ludwigii // Cytologia. 2020. V. 85. P. 307–312. https://doi.org/10.1508/cytologia.85.307
- Jay P., Tezenas E., Veber A. et al. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes // PLoS Biol. 2022. V. 20(7). https://doi.org/10.1371/journal.pbio.3001698
- Захаров И.А. Сохранение гетерозиготности по леталям в популяциях при внутритетрадном спаривании // Экол. генетика. 2009. Т. 7. С. 60–63. https://doi.org/10.17816/ecogen7460-63
- Johnson L.J., Antonovics J., Hood M.E. The evolution of intratetrad mating rates // Evolution. 2005. V. 59. P. 2525–2532.
- Zakharov I.A. Intratetrad mating as the driving force behind the formation of sex chromosomes in fungi // Trends in Genet. and Evol. 2023. V. 6. https://doi.org/10.24294/tge.v6i1.25221
Supplementary files
Supplementary Files
Action
1.
JATS XML
Download (28KB)
3.
Fig. 1. Scheme of the life cycle of heterothallic yeast Saccharomyces. D – diploid cell, A – ascus with a tetrad of haploid spores, H – haploid cells; 1 – fusion of haploid cells of different mating types (a and α); 2 – intratetrad mating – fusion of spores of one ascus; 3 – cytoduction – fusion of haploid cells with the formation of a haploid zygote with mixed cytoplasm (see [17]).
Download (126KB)
4.
Fig. 2. Expected change in the proportion of heterozygotes for letali in a series of generations with intratetrad mating and linkage of letali with the mating type locus (according to: [34]). Generations are along the abscissa axis, and the proportion of heterozygotes is along the ordinate axis. a – (k – 2a) > (k – s), with k : a : s = 12 : 1 : 3; b – (k – 2a) < (k – s), with k : a : s = 12 : 1 : 1.
Download (343KB)
