Polymorphism of five exons of the vtg gene Apis cerana in populations of Russia, South Korea and Vietnam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The best-known kitchen modules of the Apidae are the honey bees Apis mellifera and the wax bee Apis cerana. Compared to the honey bee, A. cerana is somewhat smaller in size, although it lives with it. The wax bee is native to temperate and tropical Asia, ranging from Afghanistan to Korea and Japan, north to the Himalayan foothills, as well as eastern Russia and south through Indonesia. The learning of bees to a changing environment is a fundamental question in evolutionary biology and is critical to protecting species in the face of climate change. In this method, five exons (from 3 to 7) of the vitellogenin gene vtg were sequenced to study the taxonomic relationships of individual populations and subspecies of A. cerana. Our detailed studies of the defensin 1 and 2 genes (def1 and def2) revealed the peculiarity of the structure of A. cerana in Vietnam, probably due to the geographical location of this direction. Currently, we confirm this assumption based on the analysis of the polymorphism of the vtg gene , which encodes a protein that implements the genetic control of immunity, oogenesis and lifespan. conservation within the protein may have selective significance for local populations. The vtg gene also contributes to the adaptation of bees to a cold climate. It is believed that the survival of long-lived representatives of various bee species, among other things, is associated with the development of the ability to accumulate vitellogenin, which can determine the differences in the stages of proteins in bees living in different conditions.

Full Text

Restricted Access

About the authors

A. K. Kinzikeev

Ufa Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: kinzikeev@bk.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa, 450054

R. A. Ilyasov

Koltsov Institute of Developmental Biology, the Russian Academy of Sciences

Email: kinzikeev@bk.ru
Russian Federation, Moscow, 119334

D. V. Boguslavsky

Koltsov Institute of Developmental Biology, the Russian Academy of Sciences

Email: kinzikeev@bk.ru
Russian Federation, Moscow, 119334

A. Yu. Ilyasova

Koltsov Institute of Developmental Biology, the Russian Academy of Sciences

Email: kinzikeev@bk.ru
Russian Federation, Moscow, 119334

L. R. Gaifullina

Ufa Federal Research Center of the Russian Academy of Sciences

Email: kinzikeev@bk.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa, 450054

V. N. Sattarov

Bashkir State Pedagogical University named after M. Akmully

Email: kinzikeev@bk.ru
Russian Federation, Ufa, 450077

E. S. Saltykova

Ufa Federal Research Center of the Russian Academy of Sciences

Email: kinzikeev@bk.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa, 450054

References

  1. Ruttner F. Biogeography and Taxonomy of Honeybees // Berlin: Springer Sci. & Business Media, 1988. 284 p.
  2. Ruttner F. The evolution of honey bees // Neurobiology and Behavior of Honey Bees / Еds Menzel R., Mercer A. Berlin: Springer Sci. & Business Media, 1987. 334 p.
  3. Radloff S.E., Hepburn C., Hepburn H.R. et al. Population structure and classification of Apis cerana // Apidologie. 2010. V. 41. № 6. P. 589–601. https://doi.org/10.1051/apido/2010008
  4. Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae, Apis) // Hymenoptera Res. 1999. V. 8. P. 165–196.
  5. Ilyasov R.A., Park J., Takahashi J. et al. Phylogenetic uniqueness of honeybee Apis cerana from the Korean peninsula inferred from the mitochondrial, nuclear, and morphological data // J. Apicultural Sci. 2018. V. 62. P. 189–214. https://doi.org/2478/jas-2018-0018
  6. Ilyasov R.A., Lee M., Kim K.W. et al. Phylogenetic relationships of Russian Far-East Apis cerana with other North Asian populations // J. Apicultural Sci. 2019. V. 63. P. 289–314. https://doi.org/10.2478/jas-2019-0024
  7. Kim Y.H., Kim B.Y., Kim J.M. et al. Differential expression of major royal jelly proteins in the hypopharyngeal glands of the honey bee Apis mellifera upon bacterial ingestion // Insects. 2022. V. 13. https://doi.org/10.3390/insects13040334
  8. Piulachs M.D., Guidugli K.R., Barchuk A.R. et al. The vitellogenin of the honey bee, Apis mellifera: Structural analysis of the cDNA and expression studies // Insect Biochem. and Mol. Biol. 2003. V. 33. P. 459–465. https://doi.org/10.1016/s0965-1748(03)00021-3
  9. Tanaka T., Roubik D.W., Kato M. et al. Phylogenetic position of Apis nuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences // Insects Sociaux 2001. V. 48. P. 44–51. https://doi.org/10.1007/PL00001744
  10. Kent C.F., Amer I., Alexandra C., Amro Z. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera // Mol. Ecol. 2011. V. 20. № 24. P. 5226–5235.
  11. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. № 8. P. 1166–1167.
  12. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549.
  13. Liu C.H., Di Y.P. Analysis of RNA sequencing data using CLC Genomics Workbench // Mol. Toxicol. Protocols. 2020. P. 61–113.
  14. Jung C., Lee M. Beekeeping in Korea: Past, present, and future challenges // Asian Beekeeping in the 21st Century. 2018. P. 175–197.
  15. Кинзикеев А.К., Гайфуллина Л.Р., Гладких А.Н. и др. Филогенетические отношения подвидов китайской восковой пчелы Apis cerana из Южной Кореи, Вьетнама и России на основе данных нуклеотидной последовательности генов Defensin 1 и Defensin 2 // Изв. Уфимского науч. центра РАН. 2023. № 2. С. 72–78.
  16. Thai P.H., Toan V.T. Beekeeping in Vietnam // Asian Beekeeping in the 21st Century 2018. P. 247–267. https://doi.org/10.1007/978-981-10-8222-1_11
  17. Toan T.V. Study on some biological and ecological characteristics of the hybrid between Dong Van indigenous honeybee breed (Apis cerana cerana Fabricius) with the local indigenous honeybee breeds (Apis cerana indica Fabricius) in some provinces in the North of Vietnam: PhD Тhesis. Vietnam: Hanoi Univ. Agriculture, 2012.
  18. Ilyasov R.A., Rašić S., Takahashi J. et al. Genetic relationships and signatures of adaptation to the climatic conditions in populations of Apis cerana based on the polymorphism of the gene vitellogenin // Insects. 2022. V. 13. № 11. https://doi.org/10.3390/insects13111053
  19. Kunkel J.G., Nordin J.H. Yolk proteins. Insect physiology, biochemistry and pharmacology // Pergamon Press. 1985. P. 83–111.
  20. Raikhel A.S., Dhadialla T.S. Accumulation of yolk proteins in insect oocytes // Annual Rev. Entomol. 1992. P. 217–251. https://doi.org/10.1146/annurev.en.37.010192.001245
  21. Valle D. Vitellogenesis in insects and other groups – a review // Scielo Brasil. 1993. V. 88. P. 1–26. https://doi.org/ 10.1590/s0074-02761993000100005
  22. Bose S.G., Raikhel A.S. Mosquito vitellogenin subunits originate from a common precursor // Biochem. Biophys. Res. Commun. 1988. V. 155. № 1. P. 436–442. doi: 10.1016/s0006-291x(88)81105-7
  23. Dhadialla T.S., Raikhel A.S. Biosynthesis of mosquito vitellogenin // J. Biol. Chemistry. 1990. V. 265. № 17. P. 9924–9933.
  24. Heilmann L.J., Trewitt P.M., Kumaran A.K. Proteolytic processing of the vitellogenin precursor in the boll weevil, Anthonomus grandis // Arch. Insect Biochem. and Physiol. 1993. V. 23. № 3. P. 125–134. https://doi.org/10.1002/arch.940230304
  25. Yano K., Sakurai M.T., Izumi S., Tomino S. Vitellogenin gene of the silkworm Bombyx mori: Structure and sex-dependent expression // Federation Europ. Biochem. Soc. Letters. 1994. V. 356. № 2–3. P. 207–211. https://doi.org/ 10.1016/0014-5793(94)01265-2
  26. Kageyama Y., Kinoshita T., Umesono Y. et al. Cloning of cDNA for vitellogenin of Athalia rosae (Hymenoptera) and characterization of the vitellogenin gene expression // Insect Biochem. and Mol. Biol. 1994. V. 24. № 6. P. 599–605. https://doi.org/10.1016/0965-1748(94)90096-5
  27. Hiremath S., Lehtoma K. Complete nucleotide sequence of the vitellogenin mRNA from the gypsy moth: Novel arrangement of the subunit encoding regions // Insect Biochem. and Mol. Biol. 1997. V. 27. № 1. P. 27–35. https://doi.org/10.1016/s0965-1748(96)00067-7
  28. Wheeler D., Kawooya J.K. Purification and characterization of honey bee vitellogenin // Arch. Insect Biochem. and Physiol. 1990. V. 14. № 4. P. 253–267. https://doi.org/10.1002/arch.940140405
  29. Nose Y., Lee J.M., Ueno T. et al. Cloning of cDNA for vitellogenin of the parasitoid wasp, Pimpla nipponica (Hymenoptera: Apocrita: Ichneumonidae): Vitellogenin primary structure and evolutionary considerations // Insect Biochem. and Mol. Biol. 1997. V. 27. № 12. P. 1047–1056. https://doi.org/10.1016/s0965-1748(97)00091-x
  30. Мурашев С.В., Вышегородцева А.В. Молекулярное моделирование влияния заряда аминокислот и их функциональных групп на рН и зарядовое состояние белка // Изв. Санкт-Петербургского гос. аграрного ун-та. 2016. № 45. С. 72–78.
  31. Leipart V., Montserrat-Canals M., Cunha E.S. et al. Structure prediction of honey bee vitellogenin: A multi-domain protein important for insect immu-nity // Federation Europ. Biochem. Soc. Open Bio. 2022. V. 12. № 1. P. 51–70. https://doi.org/10.1002/2211-5463.13316

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A. cerana bee sampling points (1–14) in Russia, South Korea and Vietnam. Details of bee sampling locations are presented in Table 1.

Download (614KB)
3. Fig. 2. Frequency of occurrence of polymorphic nucleotide variants in the sequences of exons 3–7 of the vtg gene in the studied Apis cerana samples. Color coding: blue – South Korea, red – Vietnam, green – Russia. Nucleotide numbering is based on the reference sequence of the vtg gene (GenBank ID: NM_001328484.1). The first three characters before the hyphen indicate the exon number, the numbers indicate the nucleotide number, the letters in brackets indicate the nucleotide substitution, and the last letter represents the reference sequence.

Download (979KB)
4. Fig. 3. Cladistic analysis of variability of nucleotide sequences of exons 3–7 of the vtg gene in Apis cerana. The sample label (see Table 1) and the name of the geographic point of collection are indicated. The Apis mellifera sample (IT1 isolate of the vitellogenin vtg gene) was used as a reference outgroup; exons 3–5 from GenBank under numbers MH755772, MH755807, MH755842, MH755877, and MH755912.

Download (375KB)

Copyright (c) 2025 Russian Academy of Sciences