The Relationship of GH and LEP Genes Polymorphism with the Qualitative Characteristics of Sheep Meat

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

DNA sequencing of Soviet Merino sheep was performed to identify single nucleotide polymorphisms (ONP) in the GH and LEP genes associated with meat quality indicators. Based on the analysis, a missense mutation C.321C>T was found in the structure of the GH gene in exon 5, leading to the replacement of arginine with glycine; in the LEP gene in exon 3, a missense mutation C.387G>T was detected, which results in the replacement of the amino acid valine with leucine. The frequency of occurrence of alleles and genotypes in the detected single polymorphisms has been established. 321C>T of the GH gene and C.387G>T of the LEP gene. The relationship between the qualitative composition of muscle tissue in sheep and their genotypic variants for both studied genes has been revealed. The muscle tissue of the heterozygous genotype according to the mutant alleles C.321T of the GH gene and C.387>T of the LEP gene contained more protein by 3.3 and 2.4 abs.%, but less moisture by 3.3 and 2.4 abs.% than in sheep of the homozygous genotype according to the wild alleles C.321C of the GH gene and C.387G of the LEP gene. Studies of the longest back muscle of Soviet Merino sheep revealed a greater number of muscle fibers in carriers of mutant alleles C.321T of the GH gene and C.387>T of the LEP gene by 4.7 and 7.6%, but a smaller diameter of the muscle fiber by 8.9 and 5.0%, compared with muscle cells of sheep homozygous for wild alleles C.321C of the GH gene and C.387G of the LEP gene. The overall assessment of the "marbling" of muscle tissue in sheep of heterozygous genotypes for the mutant alleles C.321T of the GH gene and C.387>T of the LEP gene is 2.3 and 1.5 points higher than in homozygotes for the reference alleles C.321C of the GH gene and C.387G of the LEP gene. The results obtained allow us to consider the polymorphisms C.321C>T in the GH gene and C.387G>T in the LEP gene as genetic markers for evaluating and improving the quality of sheep meat.

Full Text

Restricted Access

About the authors

A. V. Skokova

North Caucasus Federal Agrarian Research Centre

Author for correspondence.
Email: antoninaskokova@mail.ru
Russian Federation, р. Mikhailovsk, 356241

L. N. Skorykh

North Caucasus Federal Agrarian Research Centre

Email: antoninaskokova@mail.ru
Russian Federation, р. Mikhailovsk, 356241

А. V. Sukhoveeva

North Caucasus Federal Agrarian Research Centre

Email: antoninaskokova@mail.ru
Russian Federation, р. Mikhailovsk, 356241

E. Y. Safaryan

North Caucasus Federal Agrarian Research Centre

Email: antoninaskokova@mail.ru
Russian Federation, р. Mikhailovsk, 356241

N. I. Efimova

North Caucasus Federal Agrarian Research Centre

Email: antoninaskokova@mail.ru
Russian Federation, р. Mikhailovsk, 356241

References

  1. Войтюк М.М., Мачнева О.П. Современное состояние овцеводства в России // Эффективное животноводство. 2021. № 4(170). С. 102–105. https://doi.org/ 10.24412/cl-33489-2021-4-102-105.
  2. Колосов Ю.А., Абонеев В.В. Повышение сохранности и скорости роста молодняка мериносовых овец // Изв. Кабардино-Балкарского гос. аграрного ун-та им. В.М. Кокова. 2023. № 3(41). С. 77–83.
  3. Федулова Т.П., Хуссейн А.С., Налбандян А.А. Перспективная стратегия применения молекулярных маркеров в селекции Beta vulgaris L. (обзор) // Аграрный вестник Урала. 2023. №2 (231). С. 71–82.
  4. Калашников А.Е., Голубков А.И., Труфанов В.Г. и др. Геномная селекция как основа племенной работы (обзор) // Вестник Красноярского гос. аграрного ун-та. 2021. № 7 (172). С. 163–170.
  5. Саприкина Т.Ю., Криворучко А.Ю., Каниболоцкая А.А. Новые генетические маркеры прижизненных параметров мясной продуктивности у овец породы джалгинский меринос // Инновационные достижения науки и техники АПК. 2023. С. 506–510.
  6. Глазко В.И., Косовский Г.Ю., Глазко Т.Т., Федорова Л.М. ДНК маркеры и “микросателлитный код” (обзор) // С.-хоз. биология. 2023. Т. 58. № 2. С. 223–248.
  7. Valencia C.P.L., Franco L.Á.Á., Herrera D.H. Association of single nucleotide polymorphisms in the CAPN, CAST, LEP, GH, and IGF-1 genes with growth parameters and ultrasound characteristics of the Longissimus dorsi muscle in Colombian hair sheep // Tropical Аnimal Health and Рroduction. 2022. V. 54. № 3. Р. 82. https://doi.org/10.1007/s11250-022-03086-x
  8. Дубовскова М.П., Герасимов Н.П. Генетическая структура и ассоциация полиморфизма генов гормона роста (L127v) и лептина (A80v) с продуктивностью в северо-кавказской популяции герефордской породы // Животноводство и кормопроизводство. 2020. Т. 103. № 3. С. 91–101.
  9. Kiyici J.M., Akyüz B., Kaliber M. et al. Association of GH, STAT5A, MYF5 gene polymorphisms with milk somatic cell count, EC and pH levels of Holstein dairy cattle // Animal Biotechnology. 2022. V. 33. № 3. Р. 401–407. https://doi.org/10.1080/10495398.2020.1800483
  10. El-Mansy S.A., Naiel M.A., El-Naser I.A.A. et al. The growth hormone gene polymorphism and its relationship to performance and carcass features in Egyptian Awassi lambs // Heliyon. 2023. V. 9. № 3. Р. e14194. https://dx.doi.org/10.54203/scil.2024.wvj19
  11. Darwish A.M., Abdelhafez M.A., Abdel-Hamid Z.G. et al. Correlation analysis between polymorphism of leptin and IGFI genes and body measurements in Barki and Farafra sheep // Beni-Suef Univ. J. Basic and Applied Sci. 2023. V. 2. № 1. Р. 119. https://doi.org/10.5897/AJB2015.14928
  12. Farag I.M., Darwish A.M., Darwish H.R. et al. Polymorphism of growth hormone gene and its association with wool traits in Egyptian sheep breeds // African J. Biotechnology. 2016. V. 15. № 14. Р. 549–556. https://doi.org/10.5897/AJB2015.14928
  13. Abousoliman I., Reyer H., Oster M. et al. Analysis of candidate genes for growth and milk performance traits in the Egyptian Barki sheep // Animals. 2020. V. 10. № 2. https://doi.org/10.3390/ani10020197
  14. Дмитрик И.И., Завгородняя Г.В., Павлова М.И. Способ гистологической оценки качественных показателей мясной продуктивности овец с учетом морфоструктуры тканей // Ставрополь: СНИИЖК, 2010. 16 с.
  15. Абонеев В.В., Квитко Ю.Д., Селькин И.И. Методика оценки мясной продуктивности овец // Метод. рекомендации для научных сотрудников, аспирантов, студентов и практических работников в области овцеводства. Ставрополь: СНИИЖК, 2009. 36 с.
  16. Saleh A., Hammoud M., Dabour N. et al. Genetic variability in IGFBP-3 and GH genes and their association with body weight and growth performance at birth, weaning and six-month in sheep // Research Square. 2020. https://doi.org/10.21203/rs.3.rs-86803/v1
  17. Gorlov I.F., Shirokova N.V., Slozhenkina M.I. et al. Association of the growth hormone gene polymorphism with growth traits in Salsk sheep breed // Small Ruminant Res. 2017. V. 150. P. 11–14. https://doi.org/10.1016/j.smallrumres.2017.02.019
  18. Armstrong E., Ciappesoni G., Iriarte W. et al. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep // Meat Sci. 2018. V. 145. P. 202–208. https://doi.org/10.1016/j.meatsci.2018.06.014
  19. Jia J., Zhang L., Wu J. et al. Study of the correlation between GH gene polymorphism and growth traits in sheep // Genet. Mol. Res. 2014. V. 13. P. 7190–7200. https:///dx.doi.org/10.4238/2014.September.5.5
  20. Valeh M., Tahmoorespour M., Ansari M. et al. Association of growth traits with sscp polymorphisms at the growth hormone receptor (ghr) and growth hormone releasing hormone receptor (ghrhr) genes in the baluchi sheep // J. Anim. Vet. Adv. 2012. V. 8. P. 1063–1069.
  21. Wu M., Zhao H., Tang X. et al. Novel InDels of GHR, GHRH, GHRHR and their association with growth traits in seven Chinese sheep breeds // Animals. 2020. V. 10. № 10. https://doi.org/10.3390/ani10101883
  22. Hajihosseinlo A., Hashemi A., Sadeghi S. Association between polymorphism in exon 3 of leptin gene and growth traits in the Makooei sheep of Iran // Livestock Res. for Rural Development. 2012. V. 24. № 9. Р. 543–546.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristics of the chemical composition of the longest sheep back muscle depending on genotypes, %. a – GH gene, b – LEP gene.

Download (157KB)

Copyright (c) 2025 Russian Academy of Sciences