First Detection of toxb2 Gene in Pyrenophora tritici-repentis Strains from Russia and Kazakhstan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For 18 Pyrenophora tritici-repentis strains the pathogenic micromycete causing tan spot of wheat, the race was determined and the ToxB/toxb genes were identified. The analyzed strains belonged predominantly to race 4, nonpathogenic for bread wheat. Alignment of the sequences of ToxB/toxb gene of one P. tritici-repentis strain from Kazakhstan and five strains from Tatarstan with the reference sequences of the ToxB1, toxb2, ToxB4, toxb12, and toxb14 genes allowed to accurately identify the genes analyzed in this study as toxb2. This is the first report of toxb2 gene in P. tritici-repentis populations from Russia and Kazakhstan. Also, the differences between the ToxB1 and toxb2 sequences were demonstrated: 27 nucleotide substitutions and one 3 bp deletion were found in the ORF region in ToxB1. In the 5’ UTR region of all obtained toxb2 sequences, as well as in reference ToxB1 sequences, the presence of four microsatellites (25 bp each) was detected between the TATA-box and the intron. In the toxb2 sequences of reference P. tritici-repentis strain SD20 and analyzed strains a 167 bp insertion was found in the 5’ UTR region before the intron. This insertion is not found in any known ToxB1 sequence and likely affects the functionality of toxb2 gene. Novel information on the structure of toxb2 gene has implications for understanding the evolution of ToxB/toxb genes of P. tritici-repentis.

Full Text

Restricted Access

About the authors

N. V. Mironenko

All-Russian Research Institute of Plant Protection

Author for correspondence.
Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

A. S. Orina

All-Russian Research Institute of Plant Protection

Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

N. M. Kovalenko

All-Russian Research Institute of Plant Protection

Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

References

  1. Lamari L., Strelkov S., Yahyaoui A. et al. The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat // Phytopathol. 2003. V. 93. P. 391–396. https://doi.org/10.1094/PHYTO.2003.93.4.391
  2. Ciuffetti L.M., Manning V.A., Pandelova I. et al. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction // New Phytologist. 2010. V. 187. № 4. P. 911–919. https://doi.org/10.1111/j.1469-8137.2010.03362.x
  3. Shi G., Kariyawasam G., Liu S. et al. A conserved hypothetical gene is required but not sufcient for Ptr ToxC production in Pyrenophora tritici-repentis // Mol. Plant Microbe Interact. 2022. V. 35. P. 336–348. https://doi.org/10.1094/MPMI-12-21-0299-R
  4. Aboukhaddour R., Hafez M., McDonald M. et al. A revised nomenclature for ToxA haplotypes across multiple fungal species // Phytopathol. 2023. V. 113. № 7. P. 1180–1184. https://doi.org/10.1094/PHYTO-01-23-0017-SC
  5. Hafez M., Gourlie R., McDonald M. et al. Evolution of the Toxb gene in Pyrenophora tritici-repentis and related species // Mol. Plant Microbe Interact. 2024. V. 37. P. 327–337. https://doi.org/10.1094/MPMI-08-23-0114-FI
  6. Strelkov S.E., Lamari L. Host-parasite interaction in tan spot Pyrenophora tritici-repentis of wheat // Can. J. Plant Pathol. 2003. V. 25. P. 339–349. https://doi.org/10.1080/07060660309507089
  7. Martinez J.P., Oesch N.W., Ciuffetti L.M. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis // Mol. Plant Microbe Interact. 2004. V. 17. P. 467–474. https://doi.org/10.1094/MPMI.2004.17.5.467
  8. Strelkov S.E., Kowatsch R.F., Ballance G.M., Lamari L. Characterization of the ToxB gene from North African and Canadian isolates of Pyrenophora tritici-repentis // Physiol. Mol. Plant Pathol. 2006. V. 67. P. 164–170. https://doi.org/10.1016/j.pmpp.2005.12.004
  9. Amaike S., Ozga J.A., Basu U. et al. Quantification of ToxB gene expression and formation of appressoria by isolates of Pyrenophora tritici-repentis differing in pathogenicity // Plant Pathol. 2008. V. 57. P. 623–633. https://doi.org/10.1111/j.1365-3059.2007.01821.x
  10. Ali S., Francl L.J., De Wolf E.D. First report of Pyrenophora tritici-repentis race 5 from North America // Plant Dis. 1999. V. 83. P. 591. https://doi.org/10.1094/PDIS.1999.83.6.591A
  11. Lamari L., Strelkov S.E., Yahyaoui A. et al. Virulence of Pyrenophora tritici-repentis in the countries of the Silk Road // Can. J. Plant Pathol. 2005. V. 27. P. 383–388. https://doi.org/10.1080/07060660509507236
  12. Benslimane H., Lamari L., Benbelkacem A. et al. Distribution of races of Pyrenophora tritici-repentis in Algeria and identification of a new virulence type // Phytopathol. Mediterr. 2011. V. 50. P. 203–211. https://doi.org/10.14601/Phytopathol_Mediterr-8746
  13. Gamba F.M., Bassi F.M., Finckh M.R. Race structure of Pyrenophora tritici-repentis in Morocco // Phytopathol. Mediterr. 2017. V. 56. P. 119–126. https://doi.org/10.14601/ Phytopathol_Mediterr-18830
  14. Kamel S., Cherif M., Hafez M. et al. Pyrenophora tritici-repentis in Tunisia: Race structure and effector genes // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.01562
  15. Antoni E.A., Rybak K., Tucker M.P. et al. Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis // Austral. Plant Path. 2010. V. 39. P. 63–68. https://doi.org/10.1071/AP09056
  16. Guo J., Shi G., Kalil A. et al. Pyrenophora tritici-repentis race 4 isolates cause disease on tetraploid wheat // Phytopathol. 2020. V. 110. P. 1781–1790. https://doi.org/10.1094/phyto-05-20-0179-r
  17. Wei B., Moscou M.J., Sato K. et al. Identification of a locus conferring dominant susceptibility to Pyrenophora tritici-repentis in barley // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00158
  18. Andrie R.M., Pandelova I., Ciuffetti L.M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification // Phytopathol. 2007. V. 97. P. 694–701. https://doi.org/10.1094/PHYTO-97-6-0694
  19. Мироненко Н.В., Орина А.С., Коваленко Н.М., Зубко Н.Г. Расовый состав и изменчивость гена ToxA в географически отдаленных популяциях Pyrenophora tritici-repentis // Микол. и фитопатол. 2024. Т. 58. № 3. С. 246–253. https://doi.org/10.31857/S0026364824030064
  20. Михайлова Л.А., Гультяева Е.И., Кокорина Н.М. Лабораторные методы культивирования возбудителя желтой пятнистости пшеницы Pyrenophora tritici-repentis // Микол. и фитопатол. 2002. Т. 36. № 1. С. 63–67.
  21. Gluck-Thaler E., Ralston T., Konkel Z. et al. Giant Starship elements mobilize accessory genes in fungal genomes // Mol. Biol. Evol. 2021. V. 39. https://doi.org/10.1093/molbev/msac109
  22. Gourlie R., McDonald M., Hafez M. et al. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic efectors ToxA and ToxB // BMC Biol. 2022. V. 20. Art. 239. https://doi.org/10.1186/s12915-022-01433-w
  23. McDonald M.C., Taranto A.P., Hill E. et al. Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens // mBio. 2019. V. 10. https://doi.org/10.1128/mBio.01515-19
  24. Мироненко Н.В., Орина А.С., Коваленко Н.М. Новый инсерционный элемент в гене ToxA гриба Pyrenophora tritici-repentis // Генетика. 2024. T. 60. № 9. С. 000.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. The structure of the ToxB1 and toxb2 genes in P. tritici-repentis strains.

Download (177KB)

Copyright (c) 2025 Russian Academy of Sciences