The β-actin and 36B4 Genes in the Soft Coral Sclerophytum heterospiculatum (Verseveldt, 1970)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Coral polyps are the subject of various studies, including in the field of molecular biology. At the moment, much attention is being paid to molecular studies of corals of the Hexacorallia subclass. For this purpose, we identified and characterized the sequences of the β-actin and 36B4 genes from the soft coral Sclerophytum heterospiculatum (Verseveldt, 1970).The 36B4 and β-actin genes are necessary for the normal functioning of cells and are highly conservative between taxa, which are confirmed by the phylogenetic tree obtained in this work.

Full Text

Restricted Access

About the authors

E. T. Bizikashvili

Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: bilielena801@gmail.com
Russian Federation, Vladivostok, 690041

E. V. Shamshurina

Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences

Email: bilielena801@gmail.com
Russian Federation, Vladivostok, 690041

T. V. Sikorskaya

Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences

Email: bilielena801@gmail.com
Russian Federation, Vladivostok, 690041

References

  1. Daly M., Brugler M.R., Cartwright P. et al. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus* // Zootaxa. 2007. V. 1668. P. 127–182. https://doi.org/10.5281/zenodo.180149
  2. Tursch B., Tursch A. The soft coral community on a sheltered reef quadrat at Laing Island (Papua New Guinea) // Mar. Biol. 1982. V. 68. P. 321–332. https://doi.org/10.1007/bf00409597
  3. Fabricius K.E. Soft coral abundance on the central Great Barrier Reef: Effects of Acanthaster planci, space availability, and aspects of the physical environment // Coral Reefs. 1997. V. 16. P. 159–167. https://doi.org/10.1007/s003380050070
  4. Boilard A., Dube C.E., Gruet C. et al. Defining coral bleaching as a microbial dysbiosis within the coral holobiont // Microorganisms. 2020. V. 8. https://doi.org/10.3390/microorganisms8111682
  5. Sikorskaya T.V., Ermolenko E.V. Changes of phospholipid molecular species profile upon bleaching and subsequent restoration of coral sinularia heterospiculata // Chem. Nat. Compd. 2024. V. 60. P. 215–219. https://doi.org/10.1007/s10600-024-04291-w
  6. Dean J.M., Lodhi I.J. Structural and functional roles of ether lipids // Protein Cell. 2018. V. 9. P. 196–206. https://doi.org/10.1007/s13238-017-0423-5
  7. Karge W.H., Schaefer E.J., Ordovas J.M. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method // Methods Mol. Biol. 1998. V. 110. P. 43–61. https://doi.org/10.1385/1-59259-582-0:43
  8. Kozera B., Rapacz M. Reference genes in real-time PCR // J. Appl. Genet. 2013. V. 54. P. 391–406. https://doi.org/10.1007/s13353-013-0173-x
  9. Nguyen L.-T., Schmidt H.A., von Haeseler A. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
  10. Hoang D.T., Chernomor O., von Haeseler A. et al. Ufboot2: Improving the ultrafast bootstrap appro-ximation // Mol. Biol. Evol. 2018. V. 35. P. 518–522. https://doi.org/10.1093/molbev/msx281
  11. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates // Nat. Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
  12. Gagou M., Ballesta J.P., Kouyanou S. Cloning and characterization of the ribosomal protein CcP0 of the medfly Ceratitis capitata // Insect. Mol. Biol. 2000. V. 9. P. 47–55. https://doi.org/10.1046/j.1365-2583.2000.00156.x
  13. Kabsch W., Vandekerckhove J. Structure and function of actin // Annu. Rev. Biophys. Biomol. Struct. 1992. V. 21. P. 49–76. https://doi.org/10.1146/annurev.bb.21.060192.000405
  14. Ishii K., Washio T., Uechi T. et al. Characteristics and clustering of human ribosomal protein genes // BMC Genomics. 2006. V. 7. P. 37. https://doi.org/10.1186/1471-2164-7-37

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic trees based on the maximum likelihood (ML) method for amino acid sequences of genes. a – 36B4, b – β-actin of various organisms; the numbers in the nodes indicate SH-aLRT support (%) / ultrafast bootstrap support (%).

Download (236KB)

Copyright (c) 2025 Russian Academy of Sciences