Microarray analysis of peripheral blood lymphocytes transcriptome in breast cancer patients
- Autores: Minina V.I.1,2, Titov R.A.1,2, Buslaev V.Y.1, Savchenko R.R.3, Slepcov A.A.3, Bakanova M.L.1,4, Gavrineva N.A.2, Katanakhova M.V.1, Glushkov A.N.1
-
Afiliações:
- Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences
- Kemerovo State University
- Tomsk National Research Medical Centre, Russian Academy of Sciences
- Kemerovo State Medical University
- Edição: Volume 61, Nº 6 (2025)
- Páginas: 82-92
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://jdigitaldiagnostics.com/0016-6758/article/view/687089
- DOI: https://doi.org/10.31857/S0016675825060073
- EDN: https://elibrary.ru/SWDLZI
- ID: 687089
Citar
Resumo
Breast cancer is number one in terms of indicators of mortality and morbidity in women. In postgenomicera it was revealed that pathology development is linked with specificities of gene expression including transcriptional, posttransctiptional, translational, epigenetical regulation. In research was included biomaterial of 16 patients (8 patients with I/ IIstage luminal A breast cancer and 8 healthy women). Functional enrichment analysis using WebGestalt source and different databases (Gene Ontology, KEGG) showed alterations in expression of genes involved in immunological response, metabolism of carbohydrates, glutathione and nicotinamide, DNA repair, ion transport and intracellular signals transition. Obtained results expand our vision about specificities of blood mononuclears transcriptome during breast cancer on early stage.
Texto integral

Sobre autores
V. Minina
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences; Kemerovo State University
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000; Kemerovo, 650000
R. Titov
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences; Kemerovo State University
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000; Kemerovo, 650000
V. Buslaev
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000
R. Savchenko
Tomsk National Research Medical Centre, Russian Academy of Sciences
Email: vladislasbus2358@yandex.ru
Scientific Research Institute of Medical Genetics
Rússia, Tomsk, 634050A. Slepcov
Tomsk National Research Medical Centre, Russian Academy of Sciences
Email: vladislasbus2358@yandex.ru
Scientific Research Institute of Medical Genetics
Rússia, Tomsk, 634050M. Bakanova
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences; Kemerovo State Medical University
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000; Kemerovo, 650000
N. Gavrineva
Kemerovo State University
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000
M. Katanakhova
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000
A. Glushkov
Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: vladislasbus2358@yandex.ru
Rússia, Kemerovo, 650000
Bibliografia
- Obeagu E.I., Obeagu G.U. Breast cancer: A review of risk factors and diagnosis // Medicine. 2024. V. 103. № 3. P. 1–6. https://doi.org/10.1097/MD.0000000000036905
- Sun Y.S., Zhao Z., Yang Z.N. et al. Risk factors and preventions of breast cancer // Int. J. Biol. Sci. 2017. V. 13. № 11. P. 1387–1397. https://doi.org/10.7150/ijbs.21635
- Ignatiadis M., Sotiriou C. Luminal breast cancer: From biology to treatment // Nat. Rev. Clin. Oncol. 2013. V. 10. № 9. P. 494–506. https://doi.org/10.1038/nrclinonc.2013.124
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours // Nature. 2012. V. 490. № 7418. P. 61–70. https://doi.org/10.1038/nature11412
- Turner K.M., Yeo S.K., Holm T.M. et al. Heterogeneity within molecular subtypes of breast cancer // Am. J. Physiol. Cell Physiol. 2021. V. 321. № 2. P. 343–354. https://doi.org/10.1152/ajpcell.00109.2021
- Markou A., Tzanikou E., Lianidou E. The potential of liquid biopsy in the management of cancer patients // Seminars in Cancer Biology. 2022. V. 84. P. 69–79. https://doi.org/10.1016/j.semcancer.2022.03.013
- Li J., Guan X., Fan Z. et al. Non-invasive biomarkers for early detection of breast cancer // Cancers. 2020. V. 12. № 10. P. 2767–2795. https://doi.org/10.3390/cancers12102767
- Balacescu O., Balacescu L., Virtic O. et al. Blood Genome-wide transcriptional profiles of HER2 negative breast cancers patients // Mediators Inflamm. V. 2016. № 2016. https://doi.org/10.1155/2016/3239167
- Čelešnik H., Potočnik U. Peripheral blood transcriptome in breast cancer patients as a source of less invasive immune biomarkers for personalized medicine, and implications for triple negative breast cancer // Cancers (Basel). 2022. V. 14. № 3. P. 591–612. https://doi.org/10.3390/cancers14030591
- Jiang Y.Z., Ma D., Suo C. et al. Genomic and transcriptomic landscape of triple-negative breast cancers: Subtypes and treatment strategies // Cancer Cell. 2019. V. 35. № 3. P. 428–440. https://doi.org/10.1016/j.ccell.2019.02.001
- Chen Q., Liu Y., Gao Y. et al. A comprehensive genomic and transcriptomic dataset of triple-negative breast cancers // Sci. Data. 2022. V. 9. № 1. P. 587–598. https://doi.org/10.1038/s41597-022-01681-z
- Mares-Quiñones M.D., Galán-Vásquez E., Pérez-Rueda E. et al. Identification of modules and key genes associated with breast cancer subtypes through network analysis // Sci. Rep. 2024. V. 14. № 1. P. 12350–12368. https://doi.org/10.1038/s41598-024-61908-4
- Wang C., Lv X., Meng N. et al. Accurate prognosis of patients with luminal type A and HER-2 overexpressing breast cancer via the partitioning calculation method of the Ki-67 index // World Acad. Sci. J. 2023. V. 5. № 4. P. 21–30. https://doi.org/10.3892/wasj.2023.198
- Минина В.И., Дружинин В.Г., Ларионов А.В. и др. Микроматричный анализ транскриптома мононуклеаров периферической крови у больных раком легкого // Генетика. 2022. Т. 58. № 7. С. 798–807. https://doi.org/10.31857/S0016675822070128
- Sharma P., Sahni N.S., Tibshirani R. et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells // Breast Cancer Res. 2005. V. 7. № 5. P. 634–644. https://doi.org/10.1186/bcr1203
- Aarøe J., Lindahl T., Dumeaux V. et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer // Breast Cancer Res. 2010. V. 12. № 1. P. 1–11. https://doi.org/10.1186/bcr2472
- Zuckerman N.S., Yu H., Simons D.L. et al. Altered local and systemic immune profiles underlie lymph node metastasis in breast cancer patients // Int. J. of Cancer. 2013. V. 132. № 11. P. 2537–2547. https://doi.org/10.1002/ijc.27933
- Whiteside T.L. Regulatory T cells ubsetsin human cancer: Are the regulating for oragains t tumorp rogression? // Cancer Immunol., Immunotherapy. 2014. V. 63. № 1. P. 67–72. https://doi.org/10.1007/s00262-013-1490-y
- Han X., Han B., Luo H. et al. Integrated multi-omics profiling of young breast cancer patients reveals a correlation between galactose metabolism pathway and poor disease-free survival // Cancers. 2023. V. 15. № 18. P. 4637–4650. https://doi.org/10.3390/cancers15184637
- Xu S., Feng Y., Zhao S. Proteins with evolutionarily hypervariable domains are associated with immune response and better survival of basal-like breast cancer patients // Computational and Struct. Biotechnol. J. 2019. V. 17. P. 430–440. https://doi.org/10.1016/j.csbj.2019.03.008
- Pangeni R.P., Channathodiyil P., Huen D.S. et al. The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain // Clin. Epigenet. 2015. V. 7. № 1. P. 57–72. https://doi.org/10.1186/s13148-015-0089-x
- Song K.H., Park M.S., Nandu T.S. et al. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment // Nat. Commun. 2016. V. 7. № 1. P. 13796–13811. https://doi.org/10.1038/ncomms13796
- Lien E.C., Lyssiotis C.A., Juvekar A. et al. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer // Nat. Cell. Biol. 2016. V. 18. № 5. P. 572–578. https://doi.org/10.1038/ncb3341
- Zhao C., Zhang T., Xue S. et al. Adipocyte-derived glutathione promotes obesity-related breast cancer by regulating the SCARB2–ARF1–mTORC1 complex // Cell Metabolism. 2024. V. 1550. № 24. P. 00395–00399. https://doi.org/10.1016/j.cmet.2024.09.013
- Mehta V., Suman P., Chander H. High levels of unfolded protein response component CHAC1 associates with cancer progression signatures in malignant breast cancer tissues // Clin. Transl. Oncol. 2022. V. 24. № 12. P. 2351–2365. https://doi.org/10.1007/s12094-022-02889-6
- Lou W., Ding B., Wang S., Fu P. Overexpression of GPX3, a potential biomarker for diagnosis and prognosis of breast cancer, inhibits progression of breast cancer cells in vitro // Cancer Cell Int. 2020. V. 20. № 1. P. 378–393. https://doi.org/10.1186/s12935-020-01466-7
- Shen H., Huo R., Zhang Y., et al. A Pilot Study to assess the suitability of riboflavin as a surrogate marker of breast cancer resistance protein in healthy participants // J. Pharmacol. Exp. Theor. 2024. V. 390. № 2. P. 162–173. https://doi.org/10.1124/jpet.123.002015
- Wang S., Böhnert V., Joseph A.J. et al. ENPP1 is an innate immune checkpoint of the anticancer cGAMP–STING pathway in breast cancer // Proc. Natl Acad. Sci. USA. 2023. V. 120. № 52. P. 1–12. https://doi.org/10.1073/pnas.2313693120
- Amens J.N., Bahçecioglu G., Zorlutuna P. Immune system effects on breast cancer // Cell Mol. Bioeng. 2021. V. 14. № 4. P. 279–292. https://doi.org/10.1007/s12195-021-00679-8
- Lin C.Y., Beattie A., Baradaran B. et al. Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress // Sci. Rep. 2018. V. 8. № 1. P. 13904–13916. https://doi.org/10.1038/s41598-018-32272-x
- Jin H., Kim H.J. NLRC4, ASC and caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells // IJMS. 2020. V. 21. № 9. P. 3337–3352. https://doi.org/10.3390/ijms21093337
- Li X., Poire A., Jeong K.J. et al. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer // Nat. Commun. 2024. V. 15. № 1. P. 4485–4505. https://doi.org/10.1038/s41467-024-48637-y
- Zou J., Chen Y., Ji Z. et al. Identification of C4BPA as biomarker associated with immune infiltration and prognosis in breast cancer // Transl. Cancer Res. 2024. V. 13. № 1. P. 25–45. https://doi.org/10.21037/tcr-23-1215
- Kim M., Choi H.Y., Woo J.W. et al. Role of CXCL10 in the progression of in situ to invasive carcinoma of the breast // Sci. Rep. 2021. V. 11. № 1. P. 18007–18019. https://doi.org/10.1038/s41598-021-97390-5
- Cui H., Ren X., Dai L. et al. Comprehensive analysis of nicotinamide metabolism-related signature for predicting prognosis and immunotherapy response in breast cancer // Front. Immunol. 2023. V. 14. P. 1145552–1145569. https://doi.org/10.3389/fimmu.2023.1145552
- Michaels A.M., Zoccarato A., Hoare Z. et al. Disrupting Na+ ion homeostasis and Na+/K+ ATPase activity in breast cancer cells directly modulates glycolysis in vitro and in vivo // Cancer Metab. 2024. V. 12. № 1. P. 15–31. https://doi.org/10.1186/s40170-024-00343-5
- Chen J., Liu X., Huang H. et al. High salt diet may promote progression of breast tumor through eliciting immune response // Int. Immunopharmacology. 2020. V. 87. https://doi.org/10.1016/j.intimp.2020.106816
- Zhang M., Zhang Z., Tian X., et al. NEDD4L in human tumors: Regulatory mechanisms and dual effects on anti-tumor and pro-tumor // Front. Pharmacol. 2023. V. 14. https://doi.org/10.3389/fphar.2023.1291773
- Hwang K.T., Chung J.K., Jung I.M., et al. COL18A1 as the candidate gene for the prognostic marker of breast cancer according to the analysis of the DNA copy number variation by array CGH // J. Breast Cancer. 2010. V. 13. № 1. P. 37–46. https://doi.org/10.4048/jbc.2010.13.1.37
- Ding J., Li C., Shu K. et al. Membrane metalloendopeptidase (MME) is positively correlated with systemic lupus erythematosus and may inhibit the occurrence of breast cancer // PLoS One. 2023. V. 18. № 8. P. 1–15. https://doi.org/10.1371/journal.pone.0289960
- Levine K.M., Ding K., Chen L., Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors // Pharmacology & Therapeutics. 2020. V. 214. https://doi.org/10.1016/j.pharmthera.2020.107590
- Teo W.S., Nair R., Swarbrick A. New insights into the role of ID proteins in breast cancer metastasis: A MET affair // Breast Cancer Res. 2014. V. 16. № 2. P. 305–307. https://doi.org/10.1186/bcr3654
- Liang J., Pan Y., Zhang W. et al. Associations of age at diagnosis of breast cancer with incident myocardial infarction and heart failure: A prospective cohort study // eLife. 2024. V. 13. P. 1–13. https://doi.org/10.7554/eLife.95901
- Li S., Hu J., Li G. et al. Epigenetic regulation of LINC01270 in breast cancer progression by mediating LAMA2 promoter methylation and MAPK signaling pathway // Cell Biol. Toxicol. 2023. V. 39. № 4. P. 1359–1375. https://doi.org/10.1007/s10565-022-09763-9
- Zhang J., Dai H., Huo L. et al. Cytosolic DNA accumulation promotes breast cancer immunogenicity via a STING-independent pathway // J. Immunother. Cancer. 2023. V. 11. № 10. P. 1–14. https://doi.org/10.1136/jitc-2023-007560
- Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis // The Breast. 2013. V. 22. P. 66–72. https://doi.org/10.1016/j.breast.2013.07.012
- Singh N., Chakraborty R., Bhullar R.P., Chelikani P. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells // Biochem. Biophys. Res. Communications. 2014. V. 446. № 2. P. 499–503. https://doi.org/10.1016/j.bbrc.2014.02.140
- McCart Reed A.E., Song S., Kutasovic J.R. et al. Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer // Virchows Arch. 2013. V. 463. № 4. P. 535–545. https://doi.org/10.1007/s00428-013-1468-3
- Fan J., Zhang Z., Chen H. et al. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway // Genes & Diseases. 2024. V. 11. № 1. P. 430–448. https://doi.org/10.1016/j.gendis.2022.11.023
- Lei T., Zhang W., He Y. et al. ZNF276 promotes the malignant phenotype of breast carcinoma by activating the CYP1B1-mediated Wnt/β-catenin pathway // Cell Death Dis. 2022. V. 13. № 9. P. 781–796. https://doi.org/10.1038/s41419-022-05223-8
Arquivos suplementares
