Correspondence of variations of AE and Apo indices in 23–24 solar cycles
- Authors: Gulyaeva T.L.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences
- Issue: Vol 64, No 3 (2024)
- Pages: 433-440
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0016-7940/article/view/650935
- DOI: https://doi.org/10.31857/S0016794024030091
- EDN: https://elibrary.ru/SMJOCD
- ID: 650935
Cite item
Abstract
The auroral electrojet index AE is often used in forecasting models as a characteristic of a source of the disturbance propagation in the geosphere from the pole to middle and low latitudes. However, these data are no longer available digitally since January 2020. Instead of the AE−index, we suggest using the recently introduced 1 h Apo−index, given the close proximity of magnetometer networks for these indices at high latitudes and the availability of the Apo−index in real time. To this end their correlation is analyzed during 276 intense storms for 1995–2017. Storm profiles are constructed by method of superposed epoch with zero epoch time t0 = 0 taken at the threshold value of AE ≥ 1000 nT. A comparison is made of the storm profiles of AE(t), Apo(t), the interplanetary electric field E(t) and the solar wind speed Vsw(t) within 72 hours: 24 hours before the storm peak t0, and 48 hours after it. A good agreement is obtained between the sets AE(t) and Apo(t) with a correlation coefficient of 0.70. Comparison with the interplanetary parameters testifies on the correlation of AE(t) and Apo(t) with the electric field E(t) but absence of their coupling with the solar wind speed Vsw(t). A two−parametric formula is derived for dependence of the auroral electrojet index AE(t) on the interplanetary electric field E(t) and the geomagnetic Apo(t) index for the geomagnetic storm forecasting. In the absence of E(t) data, formulae for the dependence of AE(t) on Apo(t) is introduced for implementation in real time and the inverse dependence of Apo(t) on AE(t) for reconstruction of the 1 h Apo−index before 1995. Validation of the proposed models with data for 5 intense storms in 2018 has shown a close resemblance of the model with observation data of the AE−index with a high coefficient of determination R2 ranging from 0.62 to 0.81.
Full Text

About the authors
T. L. Gulyaeva
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences
Author for correspondence.
Email: gulyaeva@izmiran.ru
Russian Federation, Moscow, Troitsk
References
- Белюченко К.В., Клименко М.В., Клименко В.В., Ратовский К.Г. Связь возмущений полного электронного содержания с AE-индексом геомагнитной активности во время геомагнитной бури в марте 2015 г. // Солнечно-земная физика. Т. 8. № 3. С. 41−48. 2022. https://doi.org/10.12737/szf-83202206
- Гуляева Т.Л. Прогноз глобального электронного содержания в ионосфере в процессе развития геомагнитной бури / Тр. XX Всероссийской ежегодной конф. “Солнечная и солнечно-земная физика – 2016”. СПб, 10–14 октября 2016 г. Ред. А.В. Степанов, Ю.А. Наговицын. С. 85−88. 2016а.
- Гуляева Т.Л. Идентичность AE и Apo индексов в 23−24 циклах солнечной активности / Тр. XXVII Всероссийской ежегодной конф. “Солнечная и солнечно-земная физика – 2023”. СПб, 9–13 октября 2023 г. Ред. А.В. Степанов, Ю.А. Наговицын. С. 85−88. 2016б. https://doi.org/10.31725/0552-5829-2023-85-88
- Куражковская Н.А., Куражковский А.Ю. Эффект гистерезиса между индексами геомагнитной активности (Ap, Dst) и параметрами межпланетной среды в 21−24 циклах солнечной активности // Солнечно-земная физика. Т. 9. № 3. С. 73−82. 2023. https://doi.org/10.12737/szf-93202308
- Шубин В.Н., Иванов-Холодный Г.С., Ситнов Ю.С. Использование интегральных индексов для описания динамики магнитных бурь // Геомагнетизм и аэрономия. Т. 38. № 4. C. 16–23. 1998.
- Adebesin B.O. Investigation into the linear relationship between the AE, Dst and ap indices during different magnetic and solar activity conditions // Acta Geod. Geophys. V. 51. № 2. P. 315–331. 2016. https://doi.org/10.1007/s40328-015-0128-2
- Bergin A., Chapman S.C., Gjerloev J.W. AE, DST, and their SuperMAG counterparts: The effect of improved spatial resolution in geomagnetic indices // J. Geophys. Res. – Space. V. 125. № 5. ID e2020JA027828. 2020. https://doi.org/10.1029/2020JA027828
- Cade III W.B., Sojka J.J., Zhu L. A correlative comparison of the ring current and auroral electrojects using geomagnetic indices // J. Geophys. Res. – Space. V. 100. № 1. P. 97−105. 1995. https://doi.org/10.1029/94JA02347
- Crooker N.U., Gringauz K.I. On the low correlation between long-term averages of solar wind speed and geomagnetic activity after 1976 // J. Geophys. Res. – Space. V. 98. № 1. P. 59–62. 1993. https://doi.org/10.1029/92JA01978
- Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations // J. Geophys. Res. V. 71. № 3. P. 785–801. 1966. https://doi.org/10.1029/jz071i003p00785
- Echer E., Gonzalez W. D., Alves M.V. On the geomagnetic effects of solar wind interplanetary magnetic structures // Space Weather. V. 4. № 6. ID S06001. 2006. https://doi.org/10.1029/2005SW000200
- Fares Saba M.M., Gonzalez W.D., Cluúa de Gonzalez A.L. Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979) // Ann. Geophys. V. 15. № 10. P. 1265−1270. 1997. https://doi.org/10.1007/s00585-997-1265-x
- Göker Ü.D. Short- and long-term changes in the neurophysiological status of pilots due to radiation exposure caused by geomagnetic storms // Medical Research Archives. V.11. № 9. 2023. https://doi.org/10.18103/mra.v11i9.4395
- Gu Y., Wei H.-L., Boynton R.J., Walker S.N., Balikhin M.A. System identification and data-driven forecasting of AE index and prediction uncertainty analysis using a new cloud-NARX model // J. Geophys. Res. – Space. V. 124. № 1. P. 248–263. 2019. https://doi.org/10.1029/1018JA025957
- Gulyaeva T.L., Stanislawska I. Magnetosphere associated storms and autonomous storms in the ionosphere−plasmasphere environment // J. Atmos. Sol.-Terr. Phy. V. 72. № 1. P. 90–96. 2010. https://doi.org/10.1016/j.jastp.2009.10.012
- Gulyaeva T.L. Interaction of global electron content with the Sun and solar wind during intense geomagnetic storms // Planet. Space Sci. 2024. V. 240. ID 105830. https://doi.org/10.1016/j.pss.2023.105830
- Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P., Sahai Y., Fagundes P.R., de Jesus R., de Abreu A.J., Vesnin A.M. Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005 // Radio Sci. V. 46. № 3. ID RS0D03. 2011. https://doi.org/10.1029/2010RS004590
- Li Sh., Galas R., Ewert D., Peng J. An empirical model for the ionospheric global electron content storm-time response // Acta Geophys. V. 51. № 1. P.253–269. 2015. https://doi.org/10.1515/acgeo-2015-0067
- Luo B., Li X., Temerin M., Liu S. Prediction of the AU, AL, and AE indices using solar wind parameters // J. Geophys. Res. – Space. V. 118. № 12. P. 7683–7694. 2013. https://doi.org/10.1002/2013JA019188
- Nesse Tyssøy H., Partamies N., Babu E.M., Smith-Johnsen C., Salice J.A. The predictive capabilities of the Auroral Electrojet index for medium energy electron precipitation // Front. Astron. Space Sci. V. 8. ID 714146. 2021. https://doi.org/10.3389/fspas.2021.714146
- Prikryl P., Gillies R.G., Themens D.R., Weygand J.M., Thomas E.G., Chakraborty S. Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere // Ann. Geophys. V. 40. № 6. P. 619–639. 2022. https://doi.org/10.5194/angeo-40-619-2022
- Rostoker G. A quantitative relationship between AE and Kp // J. Geophys. Res. − Space. V. 96. № 4. P. 5853−5857. 1991. https://doi.org/10.1029/90JA02752
- Samwel S., Miteva R. Correlations between space weather parameters during intense geomagnetic storms: Analytical study // Adv. Space Res. V. 72. № 8. P. 3440−3453. 2023. https://doi.org/10.1016/j.asr.2023.07.053
- Schrijver C.J. Socio-economic hazards and impacts of space weather: The important range between mild and extreme // Space Weather. V. 13. № 9. P. 524–528. 2015. https://doi.org/10.1002/2015SW001252
- Tsurutani B.T., Goldstein B.E., Smith E.J., Gonzales W.D., Tang F., Akasofu S.I., Anderson R.R. The interplanetary and solar causes of geomagnetic activity // Planet. Space Sci. V. 38. № 1. P. 109–126. 1990. https://doi.org/10.1016/0032-0633(90)90010-N
- Yamazaki Y., Matzka J., Stolle C., Kervalishvili G., Rauberg J., Bronkalla O., Morschhauser A., Bruinsma S., Shprits Y.Y., Jackson D.R. Geomagnetic activity index Hpo // Geophys. Res. Lett. V. 49. № 10. 2022. https://doi.org/10.1029/2022GL098860
- Yenen S.D., Gulyaeva T.L., Arikan F., Arikan O. Association of ionospheric storms and substorms of Global Electron Content with proxy AE index // Adv. Space Res. V. 56. № 7. P. 1343–1353. 2015. https://doi.org/10.1016/j.asr.2015.06.025
Supplementary files
