Statistical studies of the relationship between the amplitude of positive magnetic bays at mid latitudes, geomagnetic activity and solar wind parameters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During the expansion phase of the substorm, the poleward jump of the aurora (breakup) and the expansion of the auroral bulge are observed. The expansion is accompanied by a negative magnetic bay under the aurora and a positive magnetic bay at the middle latitudes. The amplitude of the negative bay is characterized by the auroral AL-index. To characterize the positive bay, the MPB-index (Mid-latitude Positive Bay index) was previously proposed. The paper examines the statistical relationship of the MPB-index with the geomagnetic activity at different latitudes and with the parameters of the solar wind and the interplanetary magnetic field. It is shown that all extremely large values of the MPB-index (above 10.000 nT2) are observed during strong geomagnetic storms (when the Dst-index drops below –100 nT), and all extremely strong geomagnetic storms (when the Dst-index drops below –250 nT) accompanied by extremely high MPB-index values. Statistically, the MPB-index increases with the increasing of geomagnetic activity at any latitudes. The MPB-index, on average, increases with the increasing of the magnitude of the interplanetary magnetic field and any of its components. But for the Bz-component, large values of the MPB-index are observed by its southward direction. For plasma parameters of the solar wind, the MPB-index increases most strongly with the increasing of the solar wind speed. There is also the strong dependence on the dynamic pressure and on the magnitude of the EY-component of the solar wind electric field. However, the MPB-index weakly depends on solar wind density and temperature.

About the authors

A. A. Lubchich

Polar Geophysical Institute

Author for correspondence.
Email: lubchich@pgia.ru
Russian Federation, Apatity

I. V. Despirak

Polar Geophysical Institute

Email: despirak@gmail.com
Russian Federation, Apatity

R. Werner

Space Research and Technology Institute, Bulgarian Academy of Sciences

Email: rolwer52@yahoo.co.uk
Bulgaria, Stara Zagora

References

  1. Вернер Р., Гинева В., Дэспирак И.В., Любчич А.А., Сецко П.В., Атанасов А., Божилова Р., Райкова Л., Валев Д. Статистические исследования авроральной активности и возмущений геомагнитного поля на средних широтах // Геомагнетизм и аэрономия. T. 63. № 4. С. 520–533. 2023. https://doi.org/10.31857/S0016794022600727
  2. Werner R., Guineva V., Despirak I.V., Lubchich A.A., Setsko P.V., Atanassov A., Bojilova R., Raykova L., Valev D. Statistical Studies of Auroral Activity and Perturbations of the Geomagnetic Field at Middle Latitudes // Geomagnetism and Aeronomy. V. 63. № 4. P. 473–485. 2023. https://doi.org/10.1134/S0016793223600303
  3. Дремухина Л.А., Ермолаев Ю.И., Лодкина И.Г. Различия в динамике асимметричной части магнитного возмущения в периоды магнитных бурь, индуцированных разными межпланетными источниками // Геомагнетизм и аэрономия. Т. 60. № 6. С. 727–739. 2020. https://doi.org/10.31857/S0016794020060036
  4. Dremukhina L.A., Yermolaev Y.I., Lodkina I.G. Differences in the dynamics of the asymmetrical part of the magnetic disturbance during the periods of magnetic storms induced by different interplanetary sources // Geomagnetism and Aeronomy. V. 60. № 6. P. 714–726. 2020. https://doi.org/10.1134/S0016793220060031
  5. Дэспирак И.В., Клейменова Н.Г., Любчич А.А., Сецко П.В., Громова Л.И., Вернер Р. Глобальное развитие суперсуббури 28 мая 2011 года // Геомагнетизм и аэрономия. Т. 62. № 3. С. 325–335. 2022. doi: 10.31857/S0016794022030063
  6. Despirak I.V., Kleimenova N.G., Lyubchich A.A., Setsko P.V., Gromova L.I., Werner R. Global Development of the Supersubstorm of May 28, 2011 // Geomagnetism and Aeronomy. V. 62. № 3. P. 199–208. 2022. https://doi.org/10.1134/S0016793222030069
  7. Любчич А.А., Дэспирак И.В., Вернер Р. Зависимость MPB-индекса от геомагнитной активности и характеристик солнечного ветра // Proc. XLVI Annual Seminar. Apatity. P. 42–47. 2023. https://doi.org/10.51981/2588-0039.2023.46.009
  8. Любчич А.А., Дэспирак И.В., Яхнин А.Г. Связь давления и скорости солнечного ветра в минимуме одиннадцатилетнего цикла // Геомагнетизм и аэрономия. Т. 44. № 2. C. 143–148. 2004.
  9. Lyubchich A.A., Despirak I.V., Yakhnin A.G. Correlation between the solar wind pressure and velocity at a minimum of the 11-year cycle // Geomagnetism and Aeronomy. V. 44. № 2. P. 143–148. 2004.
  10. Старков Г.В. Планетарная динамика аврорального свечения / Физика околоземного космического пространства. Глава 3, 4. С. 409–499. Апатиты: изд. КНЦ РАН, 706 с. 2000.
  11. Трошичев О.А. PC-индекс – наземный индикатор поступающей в магнитосферу энергии солнечного ветра // Проблемы Арктики и Антарктики. № 2 (85). С. 102–116. 2010.
  12. Arnold B.C. Pareto Distribution / In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels). 2015. https://doi.org/10.1002/9781118445112.stat01100.pub2
  13. Chu X. Configuration and generation of substorm current wedge. Los Angeles: University of California, Los Angeles, 2015. (A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics).
  14. Coles S. An Introduction to Statistical Modeling of Extreme Values / Springer, London. 2001.
  15. Feldstein Y.I. Modelling of the magnetic field of magnetospheric ring current as a function of interplanetary medium parameters // Space Sci. Rev. V. 59. P. 83–165. 1992. https://doi.org/10.1007/BF01262538
  16. Fu H., Yue C., Zong Q.-G., Zhou X.-Z., Fu S. Statistical characteristics of substorms with different intensity // J. Geophys. Res.: Space Physics. V. 126. e2021JA029318. 2021. https://doi.org/10.1029/2021JA029318
  17. Gonzalez W.D., Echer E., Tsurutani B.T., de Gonzalez A.L.C., Dal Lago A. Interplanetary origin of intense, superintense and extreme geomagnetic storms // Space Sci. Rev. V. 158. № 1. P. 69–89. 2011. https://doi.org/10.1007/s11214-010-9715-2
  18. Gonzalez W.D., Tsurutani B.T. Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT) // Planetary and Space Science. V. 35. № 9. P. 1101–1109. 1987. https://doi.org/10.1016/0032-0633(87)90015-8
  19. Gonzalez W.D., Tsurutani B.T., Clúa de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Sci. Rev. V. 88. № 3‒4. P. 529–562. 1999. https://doi.org/10.1023/A:1005160129098
  20. Gonzalez W.D., Tsurutani B.T., Lepping R.P., Schwenn R. Interplanetary phenomena associated with very intense geomagnetic storms // Journal of Atmospheric and Solar-Terrestrial Physics. V. 64. № 2. P. 173–181. 2002. https://doi.org/10.1016/S1364-6826(01)00082-7
  21. Hajra R., Tsurutani B.T., Echer E., Gonzalez W.D., Gierloev J.W. Supersubstorms (SML < −2500 nT): Magnetic storm and solar cycle dependences // J. Geophys. Res. V. 121. P. 7805–7816. 2016. https://doi.org/10.1002/2015JA021835
  22. Iyemori T., Araki T., Kamei T., Takeda M. Mid-latitude Geomagnetic Indices “ASY” and “SYM” (Provisional). № 3. 1992 // Data Analysis Center for Geomagnetism and Space Magnetism Faculty of Science Kyoto University, ISSN 0918-5763, 1994.
  23. Mac-Mahon R.M., Gonzalez W.D. Energetics during the main phase of geomagnetic superstorms // J. Geophys. Res. V. 102. № A7. P. 14199–14207. 1997. https://doi.org/10.1029/97JA01151
  24. McPherron L.R., Chu X. The Mid-Latitude Positive Bay and the MPB Index of Substorm Activity // Space Sci. Rev. V. 206. P. 91–122. 2017. https://doi.org/10.1007/s11214-016-0316-6
  25. McPherron L.R., Chu X. The midlatitude positive bay index and the statistics of substorm occurrence // J. Geophys. Res.: Space Physics. V. 123. № 4. P. 2831–2850. 2018. https://doi.org/10.1002/2017JA024766
  26. McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms // J. Geophys. Res. V. 78. № 16. P. 3131–3149. 1973. https://doi.org/10.1029/JA078i016p03131
  27. Meng X., Tsurutani B.T., Mannucci A.J. The Solar and Interplanetary Causes of Superstorms (Minimum Dst ≤ −250 nT) During the Space Age // J. Geophys. Res.: Space Physics. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
  28. Nakamura M., Yoneda A., Oda M., Tsubouchi K. Statistical analysis of extreme auroral electrojet indices // Earth, Planets and Space. V. 67. Art. 153. 2015. https://doi.org/10.1186/s40623-015-0321-0
  29. Sergeev V.A., Shukhtina M.A., Stepanov N.A., Rogov D.D., Nikolaev A.V., Spanswick E., Donovan E., Raita T., Kero A. Toward the reconstruction of substorm‐related dynamical pattern of the radiowave auroral absorption // Space Weather. V. 18. № 3. e2019SW002385. 2020. https://doi.org/10.1029/2019SW002385
  30. Troshichev O.A., Andrezen V.G. The relationship between interplanetary quantities and magnetic activity in the southern polar cap // Planet. Space Sci. V. 33. № 4. P. 415–419. 1985. https://doi.org/10.1016/0032-0633(85)90086-8
  31. Troshichev O.A., Andrezen V.G., Vennerstrøm S., Friis-Christensen E. Magnetic activity in the polar cap – A new index // Planet. Space Sci. V. 36. № 11. P. 1095–1102. 1988. https://doi.org/10.1016/0032-0633(88)90063-3
  32. Tsurutani B.T., Gonzalez W.D., Tang F., Lee Y.T. Great geomagnetic storms // Geophysical Research Letters. V. 19. № 1. P. 73–76. 1992. https://doi.org/10.1029/91GL02783
  33. Tsurutani B.T., Hajra R., Echer E., Gjerloev J.W. Extremely intense (SML ≤ –2500 nT) substorms: isolated events that are externally triggered? // Annales Geophysicae. V. 33. P. 519–524. 2015. https://doi.org/10.5194/angeo-33-519-2015
  34. Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events // Space Weather. V. 5. № 12. S12003. 2007. https://doi.org/10.1029/2007SW000329
  35. Tsyganenko N.A., Andreeva V.A., Sitnov M.I., Stephens G.K., Gjerloev J.W., Chu X., Troshichev O.A. Reconstructing Substorms via Historical Data Mining: Is It Really Feasible? // J. Geophys. Res.: Space Physics. V. 126. № 10. e2021JA029604. 2021. https://doi.org/10.1029/2021JA029604
  36. Wanliss J.A., Showalter K.M. High-resolution global storm index: Dst versus SYM-H // J. Geophys. Res. V. 111. № A2. A02202. 2006. https://doi.org/10.1029/2005JA011034
  37. Weibull W. A statistical distribution function of wide applicability // J. Appl. Mech.-Trans. ASME. V. 18. № 3. P. 293–297. 1951. https://doi.org/10.1115/1.4010337
  38. Werner R., Guineva V., Atanassov A., Bojilova R., Raykova L., Valev D., Lubchich A., Despirak I. Calculation of the horizontal power perturbations of the Earth surface magnetic field / Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”, September, 2021, Book of Proceedings, https://doi.org/10.31401/WS.2021.proc, p. 159–165.
  39. Zong Q.-G., Yue C., Fu S.-Y. Shock induced strong substorms and super substorms: Preconditions and associated oxygen ion dynamics // Space Sci. Rev. V. 217. № 33. 2021. https://doi.org/10.1007/s11214-021-00806-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences