“Polar” Substorms and the Harang Discontinuity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We analyzed 214 cases of “polar” substorms on the Scandinavian meridian IMAGE, i.e. substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 19−02 MLT under magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang Discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during the development of “polar” substorms were studied by the maps constructed from the results of spherical harmonic analysis of the magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on these maps analysis, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a “polar” substorm determines the instantaneous location of the polar boundary of the Harang Discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of the “polar” substorms is observed simultaneously with increasing of the planetary substorm activity according to the AL-index and the development of a magnetospheric substorm in the post-midnight sector. At the same time, the development of the evening “polar” substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a “polar” substorm with typical features of the onset of a substorm (Pi2 geomagnetic pulsation bursts, an abrupt onset of the substorm close to the equatorial boundary of the constructed oval (the development of a “substorm current wedge” – etc.)

Full Text

Restricted Access

About the authors

N. G. Kleimenova

Schmidt Institute Physics of the Earth RAS

Author for correspondence.
Email: ngk1935@yandex.ru
Russian Federation, Moscow

L. I. Gromova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Email: ngk1935@yandex.ru
Russian Federation, Moscow, Troitsk

S. V. Gromov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation

Email: ngk1935@yandex.ru
Russian Federation, Moscow, Troitsk

L. M. Malysheva

Schmidt Institute Physics of the Earth RAS

Email: ngk1935@yandex.ru
Russian Federation, Moscow

I. V. Despirak

Polar Geophysical Institute

Email: ngk1935@yandex.ru
Russian Federation, Apatity

References

  1. Дэспирак И.В., Любчич А.А., Клейменова Н.Г. “Полярные” и “высокоширотные” суббури и условия в солнечном ветре // Геомагнетизм и аэрономия. Т. 54. № 5. С. 619–626. 2014. https://doi.org/10.1134/S0016793214050041
  2. Дэспирак И.B., Клейменова Н.Г., Любчич А.А., Малышева Л.М., Громова Л.И., Ролдугин А.В., Козелов Б.В. Полярные магнитные суббури и сияния на Шпицбергене: событие 17 декабря 2012// Изв. РАН. Сер. Физ. Т. 86. № 3. С. 340–348. 2022. https://doi.org/10.31857/S0367676522030097
  3. Клейменова Н.Г., Антонова Е.Е., Козырева О.В., Малышева Л.М., Корнилова Т.А., Корнилов И.А. Волновая структура магнитных суббурь в полярных широтах //Геомагнетизм и аэрономия. Т. 52. № 6. С. 785–793. 2012 https://doi.org/10.1134/S0016793212060059
  4. Клейменова Н.Г., Громова Л.И., Дэспирак И.B., Малышева Л.М., Громов С.В., Любчич А.А. Особенности полярных суббурь: анализ отдельных событий // Геомагнетизм и аэрономия. Т. 63. № 3. С. 327–339. 2023https://doi.org/10.31857/S0016794023600023.
  5. Сафаргалеев В.В., Митрофанов В.М., Козловский А.Е. Комплексный анализ полярных суббурь на основе магнитных, оптических и радарных наблюдений на Шпицбергене // Геомагнетизм и аэрономия. Т. 58. № 4. С. 793–808. 2018. https://doi.org/10.1134/S0016793218040151
  6. Akasofu S.-I. The development of the auroral substorm // Planet. Space Sci. V. 12(4). P. 273–282. 1964. https://doi.org/10.1016/0032-0633(64)90151-5
  7. Akasofu S.-I. Where is the magnetic energy for the expansion phase of auroral substorms accumulated? 2. The main body, not the magnetotail // J. Geophys. Res.: Space Physics. V. 122. P. 8479–8487. 2017. https://doi.org/10.1002/2016JA023074
  8. Baker D.N., Pulkkinen T.I., Angelopoulos V., Baumjohann W., McPherron R.L. Neutral line model of substorms: Past results and present view // J. Geophys. Res. V. 101. P. 12975– 13010. 1996. https://doi.org/10.1029/95ja03753
  9. Baumjohann W., Pellinen R.J., Opgenoorth H.J., Nielsen E. Joint two-dimensional observations of ground magnetic field and ionospheric electric fields associated with auroral zone currents: current systems associated with local auroral break-ups // Planet. Space Sci. V. 29. P. 431 – 447. 1981. https://doi.org/10.1016/0032-0633(81)90087-8
  10. Baumjohann W. Ionospheric and field-aligned current systems in the auroral zone: A concise review// Adv. Space Res. V. 2(10). P. 55-62. 1983.
  11. Bristow W.A., Sofko G., Stenbaek-Nielsen H.C., Wei S., Lummerzheim D., Otto A. Detailed analysis of substorm observations usingSuperDARN, UVI, ground-based magnetometers, and all-sky imagers // J. Geophys. Res. V. 108 (A3). P. 1124. 2003. https://doi.org/10.1029/2002JA009242
  12. Bythrow P.F., Heelis R.A., Hanson W.B., Power R.A., Hoffman R. A. Observational evidence for a boundary layer source of dayside region 1 field-aligned currents // J. Geophys. Res. V. 86 (A7). P. 5577. 1981. https://doi.org/10.1029/JA086iA07p05577
  13. Despirak I.V., Lubchich A.A., Kleimenova N.G. High-latitude substorm dependence on space weather conditions in solar cycle 23 and 24 (SC23 and SC24) // J. Atmos. Sol. Terr. Phys. 2018. V. 177. P. 54–62. https://doi.org/10.1016/j.jastp.2017.09.011
  14. Ebihara Y., Tanaka T. Where is Region 1 field-aligned current generated? // J. Geophys. Res.: Space Physics. P. 127. 2022. https://doi.org/10.1029/2021JA029991
  15. Erickson G.M., Spiro R.W., Wolf R.A. The physics of the Harang discontinuity // J. Geophys. Res. V. 96. P. 1633–1645. 1991. https://doi.org/10.1029/90JA02344
  16. Feldstein Y.L., Starkov G.V. Dynamics of auroral belt andgeomagnetic disturbances // Planet. Space Sci. V. 15. № 2. P. 209–229. 1967. https://doi.org/10.1016/0032-0633(67)90190-0
  17. Harang L. The mean field of disturbance of polar geomagnetic storms // Terr. Magn. Atmos. Electr. V. 51. P. 353 – 380. 1946. https://doi.org/10.1029/ TE051i003p00353.
  18. Heppner J.P. The Harang discontinuity in auroral belt ionospheric current // Geophys. Norv. V. 29. P. 105 – 120. 1972.
  19. Heppner J.P. Empirical models of high-latitude electric fields // J. Geophys. Res V. 82. P. 1115– 1125. 1977. https://doi.org/10.1029/JA082i007p01115.
  20. Hones E.W. The poleward leap of the auroral electrojet as seen in auroral images // J. Geophys. Res. V. 90. P. 5333–5337. 1985. https://doi.org/10.1029/JA090iA06p05333
  21. Kamide Y., Vickrey J.F. Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain // Geophys. Res. Lett. V. 10. № 2. P. 159-162. 1983. https://doi.org/10.1029/GL010i002p00159
  22. Kepko L., McPherron R.L., Amm O. et al. Substorm Current Wedge revisited // Space Sci. Rev. V. 190. P. 1–46. 2015. https://doi.org/10.1007/s11214-014-0124-9
  23. Kissinger J., Wilder F.D., McPherron R.L., Hsu T.-S., Baker J.B.H., Kepko L. Statistical occurrence and dynamics of the Harang discontinuity during steady magnetospheric convection // J. Geophys. Res.: Space Physics V. 118. P. 5127–5135. 2013. https://doi.org/10.1002/jgra.50503
  24. Kleimenova N.G., Despirak I.V., Malyshevа L.M., Gromova, L.I., Lubchich A.A., Roldugin A.V., Gromov S.V. Substorms on a contracted auroral oval // J. Atmos. Solar-Terr. Phys. V. 245. P. 106049-106062. 2023. https://doi.org/10.1016/j.jastp.2023.106049
  25. Koskinen H.E.J., Pulkkinen T.I. Midnight velocity shear zone and the concept of Harang discontinuity // J. Geophys. Res. V. 100. P. 9539 – 9547. 1995. https://doi.org/10.1029/95JA00228.
  26. Kunkel T., Baumjohann W., Untied J., Greenwald R. Electric fields and currents at the Harang discontinuity: A case study // J. Geophys. V. 59. P. 73-86. 1986.
  27. Lui A.T.Y., Perreault P.D., Akasofu S.-I., Anger C.D. The diffuse aurora // Planet. Space Sci. V. 21(5). P. 857–861. 1973. https://doi.org/10.1016/0032-0633(73)90102-5
  28. Lui A.T.Y., Akasofu S.-I., Hones E.W. Jr., Bame S.J., McIlwain C.E. Observation of the plasma sheet during a contracted oval substorm in the prolonged quiet period // J. Geophys. Res. V. 81 (7). P. 1415–1419. 1976. https://doi.org/10.1029/JA081i007p01415
  29. Lyatsky, W., Cogger L.L., Jackel B., Hamza A.M., Hughes W. J., Mur D., Rasmussen O. Substorm development as observed by Interball UV imager and 2-D magnetic array // J. Atmos. Sol. Terr. Phys. V. 63. P. 1609 – 1621. 2001. https://doi.org/10.1016/S1364-6826(01)00045-1.
  30. McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms // J. Geophys. Res. V. 78 (16). Р. 3131-3149. 1973. https://doi.org/10.1029/JA078i016p03131
  31. Milan S.E., Boakes P.D., Hubert B. Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset // J. Geophys. Res., V. 113, A09215, 2008. https://doi.org/10.1029/2008JA013340
  32. Nielsen N.E., Greenwald A. Electron flow and visual aurora at the Harang discontinuity // J. Geophys. Res V. 84. P. 4189–4200. 1979. https://doi.org/10.1029/JA084iA08p04189.
  33. Nishida A. Geomagnetic DP2 fluctuations and associated magnetospheric phenomena // J. Geophy. Res.V. 73 (5). P. 1795–1803. 1968. https://doi.org/10.1029/JA073i005p0179
  34. Opgenoorth H.J., Pellinen R.J., Maurer H., Küppers F., Heikkila W. J., Tanskanen P. Ground-based observations of an onset of localized field-aligned currents during auroral breakup around magnetic midnight // J. Geophys. V. 4. P. 101–115. 1980.
  35. Pytte T., McPherron R.L., Jr., Hones E.W., Wes H.I. Multiple-satellite studies of magnetospheric substorms, III. Distinction between polar substorms and convection-driven negative ba // J. Geophys. Res. V. 83 (A2). P. 663–679. 1978a.
  36. Pytte T., McPherron R.L., Kivelson M.G., Wes H.I. Jr., Hones E.W. Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral zone activity // J. Geophys. Res. V. 83. P. 5256–5268. 1978b. https://doi.org/10.1029/JA083iA11p05256
  37. Rostoker G., Akasofu S.-I., Foster J., Greenwald R.A., Kamide Y, Kawasaki K., Lui A.T.Y., McPherron R.L., Russell C.T. Magnetospheric substorms definitions and signatures // J. Geophys. Res. V. 85 (A4). P. 1663–1668. 1980.
  38. Safargaleev V.V., Kozlovsky A.E., Mitrofanov V.M. Polar substorm on 7 Decmber 2015: preonset phenomena and features of auroral breakup // Ann. Geophys. V. 38 (4). P. 901–918. 2020. https://doi.org/10.5194/angeo-38-901-2020
  39. Sergeev V.A., Kubyshkina M.V., Liou K., Newell P.T., Park G., Nakamura R., Mukai T. Substorm and convection bay compared: Auroral and magnetotail dynamics during convection bay // J. Geophys. Res. V. 106. P. 18,843–18,855. 2001
  40. Siscoe G.L., Lotko W., Sonnerup B.U.O. A high-latitude, low-latitude boundary layer model of the convection current system // J. Geophys. Res. V. 96 (A3). P. 3487. 1991. https://doi.org/10.1029/90ja02362
  41. Tanskanen E.F. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993-2003 examined // J. Geophys. Res. V. 114. P. A05204. 2009. https://doi.org/10.1029/2008JA013682
  42. Tighe W., Rostoker G. Characteristics of westward travelling surges during magnetospheric substorms // J. Geophys. V. 50 (1). P. 51–67. 1981. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/12
  43. Troshichev O.A. Low-latitude boundary layer and generation of field-aligned currents // Earth’s low-latitude boundary layer. P. T. Newell, and T. Onsager (Eds.). P. 329–334. AGU. 2003. https://doi.org/10.1029/133GM33
  44. Untiedt J., Baumjohann W. Studies of polar current systems using the IMS Scandinavian magnetometer array // Space Sci. Rev. V. 63. P. 245–390. 1993. https://doi.org/10.1007/BF00750770.
  45. Weygand J.M., McPherron R.L. Frey H, Amm O., Kauristie K., Viljanen A.T., Koistinen A. Relation of substorm onset to Harang discontinuity // J. Geophys. Res. V. 113. P. A04213. 2008. https://doi.org/10.1029/2007JA012537
  46. Zou S., Lyons L.R., Wang C.‐P., Boudouridis A., Ruohoniemi J.M., Anderson P.C., P.L. Dyson P. C., Devlin J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations // J. Geophys. Res. V. 114. P. A01205. 2009. https://doi.org/10.1029/2008JA013449.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a)- Schematic of the convective bay and magnetospheric substorm from [Baumjohann, 1983]; (b)- Schematic of currents in the Harang gap from [Koskinen and Pulkkinen, 1995]

Download (30KB)
3. Fig. 2. Typical examples of the distribution of global ionospheric currents from measurements on the AMPERE satellites and variations of the planetary substorm AL-index during 4 “polar” substorms. Details in the text.

Download (183KB)
4. Fig. 3. Example of one of the typical “polar” substorms on December 5, 2020: magnetograms of some IMAGE stations and midlatitude obs. Borok (BOX) and Irkutsk (IRT), as well as a map of the distribution of ionospheric currents from AMPERE data and variations of the AL-index.

Download (83KB)

Copyright (c) 2024 Russian Academy of Sciences