“Polar” Substorms and the Harang Discontinuity
- Authors: Kleimenova N.G.1, Gromova L.I.2, Gromov S.V.2, Malysheva L.M.1, Despirak I.V.3
-
Affiliations:
- Schmidt Institute Physics of the Earth RAS
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
- Polar Geophysical Institute
- Issue: Vol 64, No 5 (2024)
- Pages: 624-634
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0016-7940/article/view/686194
- DOI: https://doi.org/10.31857/S0016794024050035
- EDN: https://elibrary.ru/QRHFTR
- ID: 686194
Cite item
Abstract
We analyzed 214 cases of “polar” substorms on the Scandinavian meridian IMAGE, i.e. substorms recorded by magnetometers located at geomagnetic latitudes above ~70° MLAT at 19−02 MLT under magnetically quiet time in the absence of negative magnetic bays at lower latitudes. The Harang Discontinuity, which separates the westward and eastward electrojets by latitude, is a typical structure for the indicated MLT sector of the high-latitude ionosphere. The global distribution of ionospheric electrojets and the location of the Harang discontinuity during the development of “polar” substorms were studied by the maps constructed from the results of spherical harmonic analysis of the magnetic measurements on 66 simultaneous ionospheric communications satellites of the AMPERE project. Based on these maps analysis, it is shown that the instantaneous location of the equatorial boundary of the ionospheric current of a “polar” substorm determines the instantaneous location of the polar boundary of the Harang Discontinuity, and the polar boundary of the eastward electrojet determines its equatorial boundary. It has been established that the appearance of 90% of the “polar” substorms is observed simultaneously with increasing of the planetary substorm activity according to the AL-index and the development of a magnetospheric substorm in the post-midnight sector. At the same time, the development of the evening “polar” substorms is associated with the formation of near-midnight magnetic vortices at geomagnetic latitudes of ~70° MLAT (near the “nose” of the Harang discontinuity), indicating a sharp local enhancement of the field-aligned currents. This leads to the formation of a new substorm in the evening sector of near-polar latitudes, called a “polar” substorm with typical features of the onset of a substorm (Pi2 geomagnetic pulsation bursts, an abrupt onset of the substorm close to the equatorial boundary of the constructed oval (the development of a “substorm current wedge” – etc.)
Keywords
Full Text

About the authors
N. G. Kleimenova
Schmidt Institute Physics of the Earth RAS
Author for correspondence.
Email: ngk1935@yandex.ru
Russian Federation, Moscow
L. I. Gromova
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
Email: ngk1935@yandex.ru
Russian Federation, Moscow, Troitsk
S. V. Gromov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
Email: ngk1935@yandex.ru
Russian Federation, Moscow, Troitsk
L. M. Malysheva
Schmidt Institute Physics of the Earth RAS
Email: ngk1935@yandex.ru
Russian Federation, Moscow
I. V. Despirak
Polar Geophysical Institute
Email: ngk1935@yandex.ru
Russian Federation, Apatity
References
- Дэспирак И.В., Любчич А.А., Клейменова Н.Г. “Полярные” и “высокоширотные” суббури и условия в солнечном ветре // Геомагнетизм и аэрономия. Т. 54. № 5. С. 619–626. 2014. https://doi.org/10.1134/S0016793214050041
- Дэспирак И.B., Клейменова Н.Г., Любчич А.А., Малышева Л.М., Громова Л.И., Ролдугин А.В., Козелов Б.В. Полярные магнитные суббури и сияния на Шпицбергене: событие 17 декабря 2012// Изв. РАН. Сер. Физ. Т. 86. № 3. С. 340–348. 2022. https://doi.org/10.31857/S0367676522030097
- Клейменова Н.Г., Антонова Е.Е., Козырева О.В., Малышева Л.М., Корнилова Т.А., Корнилов И.А. Волновая структура магнитных суббурь в полярных широтах //Геомагнетизм и аэрономия. Т. 52. № 6. С. 785–793. 2012 https://doi.org/10.1134/S0016793212060059
- Клейменова Н.Г., Громова Л.И., Дэспирак И.B., Малышева Л.М., Громов С.В., Любчич А.А. Особенности полярных суббурь: анализ отдельных событий // Геомагнетизм и аэрономия. Т. 63. № 3. С. 327–339. 2023https://doi.org/10.31857/S0016794023600023.
- Сафаргалеев В.В., Митрофанов В.М., Козловский А.Е. Комплексный анализ полярных суббурь на основе магнитных, оптических и радарных наблюдений на Шпицбергене // Геомагнетизм и аэрономия. Т. 58. № 4. С. 793–808. 2018. https://doi.org/10.1134/S0016793218040151
- Akasofu S.-I. The development of the auroral substorm // Planet. Space Sci. V. 12(4). P. 273–282. 1964. https://doi.org/10.1016/0032-0633(64)90151-5
- Akasofu S.-I. Where is the magnetic energy for the expansion phase of auroral substorms accumulated? 2. The main body, not the magnetotail // J. Geophys. Res.: Space Physics. V. 122. P. 8479–8487. 2017. https://doi.org/10.1002/2016JA023074
- Baker D.N., Pulkkinen T.I., Angelopoulos V., Baumjohann W., McPherron R.L. Neutral line model of substorms: Past results and present view // J. Geophys. Res. V. 101. P. 12975– 13010. 1996. https://doi.org/10.1029/95ja03753
- Baumjohann W., Pellinen R.J., Opgenoorth H.J., Nielsen E. Joint two-dimensional observations of ground magnetic field and ionospheric electric fields associated with auroral zone currents: current systems associated with local auroral break-ups // Planet. Space Sci. V. 29. P. 431 – 447. 1981. https://doi.org/10.1016/0032-0633(81)90087-8
- Baumjohann W. Ionospheric and field-aligned current systems in the auroral zone: A concise review// Adv. Space Res. V. 2(10). P. 55-62. 1983.
- Bristow W.A., Sofko G., Stenbaek-Nielsen H.C., Wei S., Lummerzheim D., Otto A. Detailed analysis of substorm observations usingSuperDARN, UVI, ground-based magnetometers, and all-sky imagers // J. Geophys. Res. V. 108 (A3). P. 1124. 2003. https://doi.org/10.1029/2002JA009242
- Bythrow P.F., Heelis R.A., Hanson W.B., Power R.A., Hoffman R. A. Observational evidence for a boundary layer source of dayside region 1 field-aligned currents // J. Geophys. Res. V. 86 (A7). P. 5577. 1981. https://doi.org/10.1029/JA086iA07p05577
- Despirak I.V., Lubchich A.A., Kleimenova N.G. High-latitude substorm dependence on space weather conditions in solar cycle 23 and 24 (SC23 and SC24) // J. Atmos. Sol. Terr. Phys. 2018. V. 177. P. 54–62. https://doi.org/10.1016/j.jastp.2017.09.011
- Ebihara Y., Tanaka T. Where is Region 1 field-aligned current generated? // J. Geophys. Res.: Space Physics. P. 127. 2022. https://doi.org/10.1029/2021JA029991
- Erickson G.M., Spiro R.W., Wolf R.A. The physics of the Harang discontinuity // J. Geophys. Res. V. 96. P. 1633–1645. 1991. https://doi.org/10.1029/90JA02344
- Feldstein Y.L., Starkov G.V. Dynamics of auroral belt andgeomagnetic disturbances // Planet. Space Sci. V. 15. № 2. P. 209–229. 1967. https://doi.org/10.1016/0032-0633(67)90190-0
- Harang L. The mean field of disturbance of polar geomagnetic storms // Terr. Magn. Atmos. Electr. V. 51. P. 353 – 380. 1946. https://doi.org/10.1029/ TE051i003p00353.
- Heppner J.P. The Harang discontinuity in auroral belt ionospheric current // Geophys. Norv. V. 29. P. 105 – 120. 1972.
- Heppner J.P. Empirical models of high-latitude electric fields // J. Geophys. Res V. 82. P. 1115– 1125. 1977. https://doi.org/10.1029/JA082i007p01115.
- Hones E.W. The poleward leap of the auroral electrojet as seen in auroral images // J. Geophys. Res. V. 90. P. 5333–5337. 1985. https://doi.org/10.1029/JA090iA06p05333
- Kamide Y., Vickrey J.F. Variability of the Harang discontinuity as observed by the Chatanika radar and the IMS Alaska magnetometer chain // Geophys. Res. Lett. V. 10. № 2. P. 159-162. 1983. https://doi.org/10.1029/GL010i002p00159
- Kepko L., McPherron R.L., Amm O. et al. Substorm Current Wedge revisited // Space Sci. Rev. V. 190. P. 1–46. 2015. https://doi.org/10.1007/s11214-014-0124-9
- Kissinger J., Wilder F.D., McPherron R.L., Hsu T.-S., Baker J.B.H., Kepko L. Statistical occurrence and dynamics of the Harang discontinuity during steady magnetospheric convection // J. Geophys. Res.: Space Physics V. 118. P. 5127–5135. 2013. https://doi.org/10.1002/jgra.50503
- Kleimenova N.G., Despirak I.V., Malyshevа L.M., Gromova, L.I., Lubchich A.A., Roldugin A.V., Gromov S.V. Substorms on a contracted auroral oval // J. Atmos. Solar-Terr. Phys. V. 245. P. 106049-106062. 2023. https://doi.org/10.1016/j.jastp.2023.106049
- Koskinen H.E.J., Pulkkinen T.I. Midnight velocity shear zone and the concept of Harang discontinuity // J. Geophys. Res. V. 100. P. 9539 – 9547. 1995. https://doi.org/10.1029/95JA00228.
- Kunkel T., Baumjohann W., Untied J., Greenwald R. Electric fields and currents at the Harang discontinuity: A case study // J. Geophys. V. 59. P. 73-86. 1986.
- Lui A.T.Y., Perreault P.D., Akasofu S.-I., Anger C.D. The diffuse aurora // Planet. Space Sci. V. 21(5). P. 857–861. 1973. https://doi.org/10.1016/0032-0633(73)90102-5
- Lui A.T.Y., Akasofu S.-I., Hones E.W. Jr., Bame S.J., McIlwain C.E. Observation of the plasma sheet during a contracted oval substorm in the prolonged quiet period // J. Geophys. Res. V. 81 (7). P. 1415–1419. 1976. https://doi.org/10.1029/JA081i007p01415
- Lyatsky, W., Cogger L.L., Jackel B., Hamza A.M., Hughes W. J., Mur D., Rasmussen O. Substorm development as observed by Interball UV imager and 2-D magnetic array // J. Atmos. Sol. Terr. Phys. V. 63. P. 1609 – 1621. 2001. https://doi.org/10.1016/S1364-6826(01)00045-1.
- McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms // J. Geophys. Res. V. 78 (16). Р. 3131-3149. 1973. https://doi.org/10.1029/JA078i016p03131
- Milan S.E., Boakes P.D., Hubert B. Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset // J. Geophys. Res., V. 113, A09215, 2008. https://doi.org/10.1029/2008JA013340
- Nielsen N.E., Greenwald A. Electron flow and visual aurora at the Harang discontinuity // J. Geophys. Res V. 84. P. 4189–4200. 1979. https://doi.org/10.1029/JA084iA08p04189.
- Nishida A. Geomagnetic DP2 fluctuations and associated magnetospheric phenomena // J. Geophy. Res.V. 73 (5). P. 1795–1803. 1968. https://doi.org/10.1029/JA073i005p0179
- Opgenoorth H.J., Pellinen R.J., Maurer H., Küppers F., Heikkila W. J., Tanskanen P. Ground-based observations of an onset of localized field-aligned currents during auroral breakup around magnetic midnight // J. Geophys. V. 4. P. 101–115. 1980.
- Pytte T., McPherron R.L., Jr., Hones E.W., Wes H.I. Multiple-satellite studies of magnetospheric substorms, III. Distinction between polar substorms and convection-driven negative ba // J. Geophys. Res. V. 83 (A2). P. 663–679. 1978a.
- Pytte T., McPherron R.L., Kivelson M.G., Wes H.I. Jr., Hones E.W. Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral zone activity // J. Geophys. Res. V. 83. P. 5256–5268. 1978b. https://doi.org/10.1029/JA083iA11p05256
- Rostoker G., Akasofu S.-I., Foster J., Greenwald R.A., Kamide Y, Kawasaki K., Lui A.T.Y., McPherron R.L., Russell C.T. Magnetospheric substorms definitions and signatures // J. Geophys. Res. V. 85 (A4). P. 1663–1668. 1980.
- Safargaleev V.V., Kozlovsky A.E., Mitrofanov V.M. Polar substorm on 7 Decmber 2015: preonset phenomena and features of auroral breakup // Ann. Geophys. V. 38 (4). P. 901–918. 2020. https://doi.org/10.5194/angeo-38-901-2020
- Sergeev V.A., Kubyshkina M.V., Liou K., Newell P.T., Park G., Nakamura R., Mukai T. Substorm and convection bay compared: Auroral and magnetotail dynamics during convection bay // J. Geophys. Res. V. 106. P. 18,843–18,855. 2001
- Siscoe G.L., Lotko W., Sonnerup B.U.O. A high-latitude, low-latitude boundary layer model of the convection current system // J. Geophys. Res. V. 96 (A3). P. 3487. 1991. https://doi.org/10.1029/90ja02362
- Tanskanen E.F. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993-2003 examined // J. Geophys. Res. V. 114. P. A05204. 2009. https://doi.org/10.1029/2008JA013682
- Tighe W., Rostoker G. Characteristics of westward travelling surges during magnetospheric substorms // J. Geophys. V. 50 (1). P. 51–67. 1981. Retrieved from https://journal.geophysicsjournal.com/JofG/article/view/12
- Troshichev O.A. Low-latitude boundary layer and generation of field-aligned currents // Earth’s low-latitude boundary layer. P. T. Newell, and T. Onsager (Eds.). P. 329–334. AGU. 2003. https://doi.org/10.1029/133GM33
- Untiedt J., Baumjohann W. Studies of polar current systems using the IMS Scandinavian magnetometer array // Space Sci. Rev. V. 63. P. 245–390. 1993. https://doi.org/10.1007/BF00750770.
- Weygand J.M., McPherron R.L. Frey H, Amm O., Kauristie K., Viljanen A.T., Koistinen A. Relation of substorm onset to Harang discontinuity // J. Geophys. Res. V. 113. P. A04213. 2008. https://doi.org/10.1029/2007JA012537
- Zou S., Lyons L.R., Wang C.‐P., Boudouridis A., Ruohoniemi J.M., Anderson P.C., P.L. Dyson P. C., Devlin J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations // J. Geophys. Res. V. 114. P. A01205. 2009. https://doi.org/10.1029/2008JA013449.
Supplementary files
