Seasonal Features of theNmF2 Variability for Different Longitudes of the Middle Latitudes During Enhanced Geomagnetic Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the data of seventeen midlatitude ionospheric stations for 1958–1988, analysis of seasonal features of the F2 layer maximum concentration (NmF2) at different longitudes with enhanced (48 > ap(τ) > 27) geomagnetic activity, where ap(τ) – the weighted average (with a characteristic time of 14 hours) ap-index of this activity. As the characteristics of NmF2 variability, the standard deviation of NmF2 fluctuations for relatively quiet conditions and the average shift of these fluctuations xave during daytime (11–13 LT) and night (23–01 LT) were used. It was obtained that at all analyzed stations, the dispersion σ2 for enhanced geomagnetic activity is greater than for quiet conditions, and, other things being equal, it is maximum in winter at night. For enhanced geomagnetic activity in all seasons, the difference in xave values between the analyzed stations is quite large. One of the reasons for this difference is associated with the dependence of xave on geomagnetic latitudes. To select these latitudes, approximations of the geomagnetic field with tilted dipole (TD), eccentric dipole (ED) or using corrected geomagnetic (CGM) coordinates were used. It has been obtained that the xave dependence on the ED-latitude is more accurate in comparison to the xave dependence on the TD-latitude or CGM-latitude during all seasons at night and during equinoxes and winter – in the daytime. In the summer, in the daytime hours xave dependence on ED-latitude and CGM- latitude are comparable in accuracy, and they are more accurate in comparison to xave dependence on the TD-latitude. Consequently, ED-latitudes are optimal for taking into account the effects of storms in the F2 layer maximum concentration at middle latitudes during all seasons. This conclusion was apparently made for the first time.

Full Text

Restricted Access

About the authors

V. H. Depuev

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)

Author for correspondence.
Email: depuev@izmiran.ru
Russian Federation, Moscow, Troitsk

M. G. Deminov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)

Email: depuev@izmiran.ru
Russian Federation, Moscow, Troitsk

G. F. Deminova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)

Email: depuev@izmiran.ru
Russian Federation, Moscow, Troitsk

A. H. Depueva

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)

Email: depuev@izmiran.ru
Russian Federation, Moscow, Troitsk

References

  1. Аннакулиев С.К., Деминов М.Г., Фельдштейн А.Я., Шубин В.Н. О долготном эффекте в отрицательной фазе ионосферной бури на средних широтах // Геомагнетизм и аэрономия. Т. 37. № 1. С. 75–83. 1997.
  2. Деминов М.Г., Фищук Я.А. Об использовании аппроксимации геомагнитного поля эксцентричным диполем в задачах моделирования ионосферы и плазмосферы // Геомагнетизм и аэрономия. Т. 40. № 3. С. 119–123. 2000.
  3. Деминов М.Г., Деминова Г.Ф., Жеребцов Г.А., Полех Н.М. Свойства изменчивости концентрации максимума F2-слоя над Иркутском при разных уровнях солнечной и геомагнитной активности // Солнечно-земная физика. Т. 1. № 1. С. 56–62. 2015. https://doi.org/10.12737/6558
  4. Деминов М.Г., Деминова Г.Ф., Депуев В.Х., Депуева А.Х. Свойства изменчивости концентрации максимума F2-слоя над Алма-Атой при разных уровнях солнечной и геомагнитной активности // Геомагнетизм и аэрономия. Т. 63. № 5. С. 630–637. 2023. https://doi.org/10.31857/S0016794023600308
  5. Депуев В.X., Деминов М.Г., Деминова Г.Ф., Депуева А.Х. Изменчивость NmF2 на разных долготах средних широт: роль геомагнитной активности // Геомагнетизм и аэрономия. Т. 64. № 4. С. 503–511. 2024. https://doi.org/10.31857/S0016794024040059
  6. Кринберг И.А., Тащилин А.В. Ионосфера и плазмосфера. М.: Наука, 189 с. 1984.
  7. Черниговская М.А., Шпынев Б.Г., Хабитуев Д.С., Ратовский К.Г., Белинская А.Ю., Степанов А.Е., Бычков В.В., Григорьева С.А., Панченко В.А., Мелич Й. Исследование отклика среднеширотной ионосферы Северного полушария на магнитные бури в марте 2012 г. // Солнечно-земная физика. Т. 8. № 4. С. 46–56. 2022. https://doi.org/10.12737/szf-84202204
  8. Alken P., Thebault E., Beggan C.D. et al. International geomagnetic reference field: the thirteenth generation // Earth Planets Space. V. 73. № 1. ID 49. 2021. https://doi.org/10.1186/s40623-020-01288-x
  9. Altadill D. Time/altitude electron density variability above Ebro, Spain // Adv. Space Res. V. 39. № 5. P. 962–969. 2007. https://doi.org/10.1016/j.asr.2006.05.031
  10. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V. STORM: An empirical storm-time ionospheric correction model: 1. Model description // Radio Sci. V. 37. № 5. ID 1070. 2002. https://doi.org/10.1029/2001RS002467
  11. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity // Radio Sci. V. 40. № 5. ID RS5009. 2005. https://doi.org/10.1029/2004RS003179
  12. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S. et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations // Adv. Space Res. V. 67. № 2. P. 762–776. 2021. https://doi.org/10.1016/j.asr.2020.10.028
  13. Cliver E.W., Kamide Y., Ling A.G. The semiannual variation of geomagnetic activity: phases and profiles for 130 years of aa data // J. Atmos. Sol.-Terr. Phy. V. 64. № 1. P. 47–53. 2002. https://doi.org/10.1016/S1364-6826(01)00093-1
  14. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  15. Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity // Adv. Space Res. V. 51. № 5. P. 702–711. 2013. https://doi.org/10.1016/j.asr.2012.09.037
  16. Dudok de Wit T., Bruinsma S. The 30 cm radio flux as a solar proxy for thermosphere density modeling // J. Space Weather Space Clim. V. 7. ID A9. 2017. https://doi.org/10.1051/swsc/2017008
  17. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 62. № 8. P. 685–693. 2000. https://doi.org/10.1016/S1364-6826(00)00029-8
  18. Fotiadis D.N., Kouris S.S. A functional dependence of foF2 variability on latitude // Adv. Space Res. V. 37. № 5. P. 1023–1028. 2006. https://doi.org/10.1016/j.asr.2005.02.054
  19. Fraser-Smith A.C. Centered and eccentric geomagnetic dipoles and their poles, 1600–1985 // Rev. Geophys. V. 25. № 1. P. 1–16. 1987. https://doi.org/10.1029/RG025i001p00001
  20. Fuller-Rowell T.J., Codrescu M.V., Rishbeth H., Moffett R.J., Quegan S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms // J. Geophys. Res. – Space. V. 101. № 2. P. 2343–2353. 1996. https://doi.org/10.1029/95JA01614
  21. Gustafsson G., Papitashvili N.E., Papitashvili V.O. A revised corrected geomagnetic coordinate system for epochs 1985 and 1990 // J. Atmos. Terr. Phys. V. 54. № 11–12. P. 1609–1631. 1992. https://doi.org/10.1016/0021-9169(92)90167-J
  22. Kilifarska N.A. Longitudinal effects in the ionosphere during geomagnetic storms // Adv. Space Res. V. 8. № 4. P. 23–26. 1988. https://doi.org/10.1016/0273-1177(88)90200-1
  23. Koochak Z., Fraser-Smith A. C. An update on the centered and eccentric geomagnetic dipoles and their poles for the years 1980–2015 // Earth and Space Science. V. 4. № 10. P. 626–636. 2017. https://doi.org/10.1002/2017EA000280
  24. Kumar V.V., Parkinson M.L. A global scale picture of ionospheric peak electron density changes during geomagnetic storms // Space Weather. V. 15. № 4. P. 637–652. 2017. https://doi.org/10.1002/2016SW001573
  25. Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
  26. Mikhailov A.V. Ionospheric F2-layer storms // Fisica de la Tierra. V. 12. P. 223–262. 2000.
  27. Pirog O., Deminov M., Deminova G., Zherebtsov G., Polekh N. Peculiarities of the nighttime winter foF2 increase over Irkutsk // Adv. Space Res. V. 47. № 6. P. 921–929. 2011. https://doi.org/10.1016/j.asr.2010.11.015
  28. Prölss G.W. Seasonal variations of atmospheric-ionospheric disturbances // J. Geophys. Res. V. 82. № 10. P. 1635–1640. 1977. https://doi.org/10.1029/JA082i010p01635
  29. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data // Adv. Space Res. V. 55. № 8. P. 2041–2047. 2015. https://doi.org/10.1016/j.asr.2014.08.001
  30. Ratovsky K.G., Medvedeva I.V. Local empirical model of ionospheric variability // Adv. Space Res. V. 71. № 5. P. 2299–2306. 2023. https://doi.org/10.1016/j.asr.2022.10.065
  31. Rishbeth H., Mendillo M. Patterns of F2-layer variability // J. Atmos. Sol.-Terr. Phy. V. 63. № 15. P. 1661–1680. 2001. https://doi.org/10.1016/S1364-6826(01)00036-0
  32. Shpynev B.G., Zolotukhina N.A., Polekh N.M. et al. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain // J. Atmos. Sol.-Terr. Phy. V. 180. P. 93–105. 2018. https://doi.org/10.1016/j.jastp.2017.10.014
  33. Taylor J.R. An introduction to error analysis. Mill Valley, CA: Univer. Sci. Books, 270 p. 1982.
  34. Wrenn G.L. Time-weighted accumulations ap(τ) and Kp(τ) // J. Geophys. Res. – Space. V. 92. № 9. P. 10125–10129. 1987. https://doi.org/10.1029/JA092iA09p10125
  35. Wrenn G.L., Rodger A.S. Geomagnetic modification of the mid-latitude ionosphere - Toward a strategy for the improved forecasting of foF2 // Radio Sci. V. 24. № 1. P. 99–111. 1989. https://doi.org/10.1029/RS024i001p00099
  36. Zhang S.-R., Holt J.M. Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: variability // Ann. Geophys. V. 26. № 6. P. 1525–1537. 2008. https://doi.org/10.5194/angeo-26-1525-2008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the mean xave shift of the F2 layer maximum concentration on the inclined (TD) or eccentric (ED) dipole or corrected geomagnetic (CGM) latitudes at equinoxes for daytime (11-13 LT) and nighttime (23-01 LT) hours at elevated geomagnetic activity from the data in Table 1 (dots). Regression equations (7) from these data (solid lines), certainty coefficients R2 and standard deviations σ for these equations.

Download (44KB)
3. Fig. 2. Dependences of the mean xave shift of the maximum concentration of the F2 layer on the inclined (TD) or eccentric (ED) dipole or corrected geomagnetic (CGM) latitudes in summer for daytime (11-13 LT) and nighttime (23-01 LT) hours at elevated geomagnetic activity from data of ionospheric stations whose coordinates are given in Table 1 (points). Regression equations (7) from these data (solid lines), certainty coefficients R2 and standard deviations σ for these equations.

Download (47KB)
4. Fig. 3. Dependences of the mean xave shift of the maximum concentration of the F2 layer on the latitudes of the inclined (TD) or eccentric (ED) dipole or corrected geomagnetic (CGM) latitudes in winter for the daytime (11-13 LT) and nighttime (23-01 LT) hours at elevated geomagnetic activity from data of ionospheric stations whose coordinates are given in Table 1 (points). Regression equations (7) from these data (solid lines), certainty coefficients R2 and standard deviations σ for these equations.

Download (45KB)

Copyright (c) 2024 Russian Academy of Sciences