Влияние ветра в ионосфере на формирование аномалий ОНЧ/НЧ-радиосигналов, связанных с подготовкой землетрясений

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрено влияние ветра в ионосфере на характеристики внутренних гравитационных волн. Показано, что взаимодействие ветра в ионосфере с геомагнитным полем приводит к появлению силы Ампера, вертикальный градиент которой модифицирует свойства внутренних гравитационных волн. В результате такого взаимодействия возникает дискретный спектр колебаний ионосферы с основным периодом порядка 30 мин. Увеличение силы Ампера за счет электрического поля сейсмического происхождения приводит к появлению в спектре колебаний ионосферы максимумов с более короткими периодами порядка 10 и 22 мин. Наблюдения возмущения фазы и амплитуды отраженной от ионосферы радиоволны в период роста сейсмической активности согласуются с выводами рассмотренной модели.

Полный текст

Доступ закрыт

Об авторах

В. М. Сорокин

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Автор, ответственный за переписку.
Email: sova@izmiran.ru
Россия, Москва, Троицк

Список литературы

  1. Гершман Б.Н. Динамика ионосферной плазмы. М.: Наука, 256 с. 1974.
  2. Госсард Э., Хук У. Волны в атмосфере. М.: Мир, 532 с. 1978.
  3. Гохберг М.Б., Некрасов А.К., Шалимов С.Л. О влиянии нестабильного выхода парниковых газов в сейсмически активных регионах на ионосферу // Физика Земли. № 8. С. 52–55. 1996.
  4. Гохберг М.Б., Шалимов Л.С. Литосферно-ионосферная связь и ее моделирование // Российский журнал наук о Земле. Т. 2. № 2. С. 95–108. 2000.
  5. Липеровский В.А., Похотелов О.А., Шалимов С.Л. Ионосферные предвестники землетрясений. М.: Наука, 304 с. 1992.
  6. Сорокин В.М., Ружин Ю.Я. Электродинамическая модель процессов в атмосфере и ионосфере накануне землетрясения // Геомагнетизм и аэрономия. Т. 55. № 5. С. 641–658. 2015. https://doi.org/10.7868/S001679401505017X
  7. Сорокин В.М. Плазменные и электромагнитные эффекты в ионосфере, связанные с динамикой заряженных аэрозолей в нижней атмосфере // Химическая физика. Т. 26. № 4. С. 45–80. 2007.
  8. Фукс И.М., Шубова Р.С. Аномалии СДВ сигналов как отклик на процессы в приземной атмосфере // Геомагнетизм и аэрономия. Т. 34. № 2. С. 130–136. 1995.
  9. Biagi P.F., Piccolo R., Castellana L. et al. VLF-LF radio signals collected at Bari (South Italy): a preliminary analysis on signal anomalies associated with earthquakes // Nat. Hazard. Earth Sys. V. 4. № 5–6. P. 685–689. 2004. https://doi.org/10.5194/nhess-4-685-2004
  10. Chmyrev V.M., Isaev N.V., Bilichenko S.V., Stanev G. Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over on earthquake center // Phys. Earth Planet. In. V. 57. № 1–2. P. 110–114. 1989. https://doi.org/10.1016/0031-9201(89)90220-3
  11. Geisler J.E. Atmospheric winds in the middle latitude F-region // J. Atmos. Terr. Phys. V. 28. № 8. P. 703–720. 1966. https://doi.org/10.1016/0021-9169(66)90020-1
  12. Gousheva M., Glavcheva R., Danov D., Angelov P., Hristov P., Kirov B., Georgieva K. Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes // Adv. Space Res. V. 37. № 4. P. 660–665. 2006. https://doi.org/10.1016/j.asr.2004.12.050
  13. Gousheva M., Danov D., Hristov P., Matova M. Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects // Nat. Hazard. Earth Sys. V. 8. № 1. P. 101–107. 2008. https://doi.org/10.5194/nhess-8-101-2008
  14. Gousheva M., Danov D., Hristov P., Matova M. Ionospheric quasi-static electric field anomalies during seismic activity August– September 1981 // Nat. Hazard. Earth Sys. V. 9. № 1. P. 3–15. 2009. https://doi.org/10.5194/nhess-9-3-2009
  15. Hayakawa M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes // Sensors. V. 7. № 7. P. 1141–1158. 2007. https://doi.org/10.3390/s7071141
  16. Mareev E.A., Iudin D.I., Molchanov O.A. Mosaic source of internal gravity waves associated with seismic activity / Seismo Electromagnetics: Lithosphere– Atmosphere– Ionosphere Coupling. Eds. M. Hayakawa and O.A. Molchanov. Tokyo: TERRAPUB. P. 335–342. 2002.
  17. Martynenko S.I., Fuks I.M., Shubova R.S. Ionospheric electric-field influence on the parameter of VLF signals connected with nuclear accidents and earthquakes // Journal of Atmospheric Electricity. V. 15. № 3. P. 259–269. 1996. https://doi.org/10.1541/jae.16.259
  18. Molchanov O., Fedorov E., Schekotov A. et al. Lithosphere–atmosphere–ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere // Nat. Hazard. Earth Sys. V. 4. № 5–6. P. 757–767. 2004. https://doi.org/10.5194/nhess-4-757-2004
  19. Pokhotelov O.A., Parrot M., Fedorov E.N., Pilipenko V.A., Surkov V.V., Gladychev V.A. Response of the ionosphere to natural and man-made acoustic sources // Ann. Geophys. V. 13. № 11. P. 1197–1210. 1995. https://doi.org/10.1007/s00585-995-1197-2
  20. Rozhnoy A.A., Solovieva M.S., Molchanov O.A., Hayakawa M., Maekawa S., Biagi P.F. Anomalies of LF signal during seismic activity in November–December 2004 // Nat. Hazard. Earth Sys. V. 5. № 5. P. 657–660. 2005. https://doi.org/10.5194/nhess-5-657-2005
  21. Rozhnoy A.A., Molchanov O.A., Solovieva M.S. et al. Possible seismo-ionosphere perturbations revealed by VLF signals collected on ground and on a satellite // Nat. Hazard. Earth Sys. V. 7. № 5. P. 617–624. 2007. https://doi.org/10.5194/nhess-7-617-2007
  22. Rozhnoi A., Solovieva M., Molchanov O., Schwingenschuh K., Boudjada M., Biagi P.F., Maggipinto T., Castellana L., Ermini A., Hayakawa M. Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April 2009 // Nat. Hazard. Earth Sys. V. 9. № 5. P. 1727–1732. 2009. https://doi.org/10.5194/nhess-9-1727-2009
  23. Sorokin V.M., Yaschenko A.K., Hayakawa M. A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity // Nat. Hazard. Earth Sys. V. 7. № 1. P. 155–163. 2007. https://doi.org/10.5194/nhess-7-155-2007
  24. Sorokin V.M., Chmyrev V.M., Hayakawa M. Electrodynamic Coupling of Lithosphere–Atmosphere–Ionosphere of the Earth. New York: Nova Science Publishers, 355 p. 2015. ISBN: 978-1-63483-030-0.
  25. Sorokin V.M., Chmyrev V.M., Hayakawa M. A review on electrodynamic influence of atmospheric processes to the ionosphere // Open Journal of Earthquake Research. V. 9. № 2. P. 113–141. 2020. https://doi.org/10.4236/ojer.2020.92008
  26. Tronin A.A. Satellite thermal survey application for earthquake prediction / Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Ed. M. Hayakawa. Tokyo: TERRAPUB. P. 717–746. 1999.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема регистрации возмущения ионосферы.

Скачать (10KB)
3. Рис. 2. Система координат, использованная в расчетах.

4. Рис. 3. Зависимости значений периодов в минутах от номеров спектральных линий.


© Российская академия наук, 2024