The Aerosol Layer of the Lower Thermosphere: II. Observation Under the Full Moon

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the “Terminator” space experiment on board the International Space Station are given. Images of the Earth atmosphere are obtained in the near IR spectral range at limb-geometry of observations under the full Moon. The calculated vertical profiles of volume emission/scattering rate point that the aerosol layer occurs within the height region of 80 – 100 km in the Earth atmosphere. It is proposed that this layer is of meteoric origin. Estimations show that the size spectrum of aerosol particles lies within the region of 1 – 100 nm.

全文:

受限制的访问

作者简介

A. Belyaev

Fedorov Institute of Applied Geophysics (IPG)

编辑信件的主要联系方式.
Email: anb52@mail.ru
俄罗斯联邦, Moscow

S. Nikolaishvili

Fedorov Institute of Applied Geophysics (IPG)

Email: ser58ge@gmail.ru
俄罗斯联邦, Moscow

A. Omel’chenko

Fedorov Institute of Applied Geophysics (IPG)

Email: alexom@mail.ru
俄罗斯联邦, Moscow

A. Repin

Fedorov Institute of Applied Geophysics (IPG)

Email: repin_a_yu@mail.ru
俄罗斯联邦, Moscow

M. Poluarshinov

S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)

Email: mikhail.poluarshinov@rsce.ru
俄罗斯联邦, Korolev, Moscow oblast

Yu. Smirnov

S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)

Email: yury.v.smirnov@rsce.ru
俄罗斯联邦, Korolev, Moscow oblast

A. Strakhov

Scientific Production Enterprise Robis (NPP Robis)

Email: lexand@robis.ru
俄罗斯联邦, Moscow

A. Batishchev

National Research Nuclear University Moscow Engineering Physical Institute (MEPhI)

Email: alexey-batschev@mail.ru
俄罗斯联邦, Moscow

V. Stasevich

Scientific Production Enterprise Robis (NPP Robis)

Email: walter@robis.ru
俄罗斯联邦, Moscow

Yu. Platov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences

Email: yplatov@mail.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Аванесов Г.А., Строилов Н.А., Филиппова О.В., Шамис В.А., Эльяшев Я.Д. Фотометрическая модель звездного датчика ориентации // Современные проблемы дистанционного зондирования Земли из космоса. Т. 16. № 5. С. 75–84. 2019. https://doi.org/10.21046/2070-7401-2019-16-5-75-84
  2. Беляев А.Н., Николайшвили С.Ш., Омельченко А.Н., Репин А.Ю., Полуаршинов М.А., Смирнов Ю.В., Страхов А.В., Батищев А.Г., Стасевич В.И., Платов Ю.В. Аэрозольный слой нижней термосферы: I. наблюдение на фоне лимба Земли // Геомагнетизм и аэрономия. Т. 63. № 4. C. 455–466. 2023. https://doi.org/10.31857/S0016794023600400
  3. Гурвич А.С., Воробьёв В.В., Савченко С.А., Пахомов А.И., Падалка Г.И., Шефов Н.Н., Семёнов А.И. Ночное свечение верхней атмосферы в диапазоне 420 – 530 нм по измерениям на орбитальной станции “Мир” в 1999 г. // Геомагнетизм и аэрономия. Т. 42. № 4. С. 541–546. 2002.
  4. Килбас А.А. Интегральные уравнения: курс лекций. Мн.: БГУ, 143 с. 2005.
  5. Carrillo-Sánchez J.D., Nesvorný D., Pokorný P., Janches D., Plane J.M.C. Sources of cosmic dust in the Earth’s atmosphere // Geophys. Res. Lett. V. 43. № 23. P. 11979–11986. 2016. https://doi.org/10.1002/2016GL071697
  6. Carrillo-Sánchez J.D., Gómez-Martin J.C., Bones D.L., Nesvorný D., Pokorný P., Benna M., Flynn G.F., Plane J.M.C. Cosmic dust fluxes in the atmospheres of Earth, Mars and Venus // Icarus. V. 335. ID 113395. 2020. https://doi.org/10.1016/j.icarus.2019.113395
  7. Gardner C.S., Liu A.Z., Marsh D.R., Wuhu Feng, Plane J.M.C. Inferring the global cosmic dust influx to the Earth’s atmosphere from lidar observations of the vertical flux of mesospheric Na // J. Geophys. Res. – Space. V.119. № 9. P. 7870–7879. 2014. https://doi.org/10.1002/2014JA020383
  8. Gelinas L.J., Lynch K.A., Kelley M.C., Collins R.L., Baker S., Zhou Q., Friedman J.C. First observation of meteoritic charged dust in the tropical mesosphere // Geophys. Res. Lett. V. 25. № 21. P. 4047–4050. 1998. https://doi.org/10.1029/1998GL900089
  9. Hedin J., Giovane F., Waldemarsson T., Gumbel J., Blum J., Stroud R.M., Marlin L., Moser J., Siskind D.E., Jansson K., Saunders R.W., Summers M.E., Reissaus P., Stegman J., Plane J.M.C., Horanyi M. The MAGIC meteoric smoke particle sampler // J. Atmos. Sol.-Terr. Phy. V. 118. P. 127–144. 2014. https://doi.org/10.1016/j.jastp.2014.03.003
  10. Hervig M.E., Gordley L.L., Deaver L.E., Siskind D.E., Stevens M.H., Russell J.M., Bailey S.M., Megner L., Bardeen C.G. First satellite observations of meteoric smoke in the middle atmosphere // Geophys. Res. Lett. V. 36. № 18. ID L18805. 2009. https://doi.org/10.1029/2009GL039737
  11. Hervig M.E., Plane J.M.C., Siskind D.E., Wuhu Feng, Bardeen C.G., Bailey S.M. New global meteoric smoke observations from SOFIE: Insight regarding chemical composition, meteoric influx, and hemispheric asymmetry // J. Geophys. Res. – Atmos. V. 126. № 13. ID e2021JD035007. 2021. https://doi.org/10.1029/2021JD035007
  12. Lynch K.A., Gelinas L.J., Kelley M.C., Collins R.L., Widholm M., Rau D., MacDonald E., Liu Y., Ulwick J., Mace P. Multiple sounding rocket observations of charged dust in the polar winter mesosphere // J. Geophys. Res. – Space. V.110. № 3. ID A03302. 2005. https://doi.org/10.1029/2004JA010502
  13. Plane J.M.C., Feng W., Dawkins E.C.M. The mesosphere and metals: Chemistry and changes // Chem. Rev. V. 115. № 10. P. 4497–4541. 2023. https://doi.org/10.1021/cr500501m
  14. Plane J.M.C., Saunders R.W., Hedin J., Stegman J., Khaplanov M., Gumbel J., Lynch K.A., Bracikowski P.J., Gelinas L.J., Friedrich M., Blindheim S., Gausa M., Williams B.P. A combined rocket-borne and ground-based of the sodium layer and charged dust in the upper mesosphere // J. Atmos. Sol.-Terr. Phy. V. 118. P. 151–160. 2014. https://doi.org/10.1016/j.jastp.2013.11.008
  15. Rapp M., Hedin J., Strelnikova I., Friedrich M., Gumbel J., Lübken F.-J. Observations of positively charged nanoparticles in the nighttime polar mesosphere // Geophys. Res. Lett. V. 32. № 23. ID L23821. 2005. https://doi.org/10.1029/2005GL024676
  16. Saunders R.W., Plane J.M.C. A laboratory study of meteor smoke analogues: composition, optical properties and growth kinetics // J. Atmos. Sol.-Terr. Phy. V. 68. № 18. P. 2182–2202. 2006. https://doi.org/10.1016/j.jastp.2006.09.006
  17. Schulte P., Arnold F. Detection of upper atmospheric negatively charged microclusters by a rocket borne mass spectrometer // Geophys. Res. Lett. V.19. № 23. P. 2297–2300. 1992. https://doi.org/10.1029/92GL02631
  18. Yee J.H., Abreu V.J. Mesospheric 5577 Å green line and atmospheric motions – Atmospheric Explorer satellite observations // Planet. Space Sci. V. 35. № 11. P. 1389–1395. 1987. https://doi.org/10.1016/0032-0633(87)90051-1

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. ISS trajectory (dashed line) and position of the registered SAS (continuous thick line) during the session on 07.03.2023.

下载 (41KB)
3. Fig. 2. (a) Photograph of the atmosphere in the 700 ± 5 nm wavelength range taken from the ISS RS on 07.03.2023 at 13:49:26 UTC. (b) Photograph of the atmosphere in the wavelength range 830 ± 5 nm, taken from the ISS RS on 07.03.2023 at 13:49:26 UTC.

下载 (169KB)
4. Fig. 3. Actual and calculated positions of the SAS on the camera matrices. Crosses (camera No. 4) and circles (camera No. 3) indicate the position of the brightest pixels in the central part of the observed layer (see Table 2). The thin line corresponds to the projection with α=17.3°+0.0°, β=5.66°+1.64°=7.3°, θ=72.0°. The thick line is the projection with α=17.3°-0.63°=16.67°, β=5.66°+3.34°=9.0°, θ=72.0°.

下载 (11KB)
5. Fig. 4. Averaged vertical brightness profiles of the atmosphere. The thick line indicates the vertical brightness profiles of the atmosphere in the wavelength interval 700 ± 5 nm, the thin line - in the interval 830 ± 5 nm. The brightness profiles were constructed from the images taken on 07.03.2023 at the time points: 10:43:46 UTC (a), 13:49:26 UTC (b), 15:22:26 UTC (c).

下载 (30KB)
6. Fig. 5. The same atmospheric brightness profiles as in Fig. 4, but after subtracting the background component.

下载 (28KB)
7. Fig. 6. Vertical profiles of the atmospheric bulk luminosity as a result of moonlight scattering calculated from the corresponding luminosity profiles in Fig. 5.

下载 (32KB)
8. Fig. 7A1. Perspective projection on the matrix plane. T is the camera sensor plane; S is the projection center; SM is the optical axis of the camera lens; the length of the SM segment is equal to its focal length f , M is the main point of the sensor, i.e., the point of intersection of the optical axis O with the T sensor plane.

下载 (14KB)
9. Fig. 8A2. Position of the photodetector matrix (M) relative to the cone of the visible horizon.

下载 (11KB)

版权所有 © Russian Academy of Sciences, 2024