The Aerosol Layer of the Lower Thermosphere: II. Observation Under the Full Moon
- Authors: Belyaev A.N.1, Nikolaishvili S.S.1, Omel’chenko A.N.1, Repin A.Y.1, Poluarshinov M.A.2, Smirnov Y.V.2, Strakhov A.V.3, Batishchev A.G.4, Stasevich V.I.3, Platov Y.V.5
-
Affiliations:
- Fedorov Institute of Applied Geophysics (IPG)
- S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)
- Scientific Production Enterprise Robis (NPP Robis)
- National Research Nuclear University Moscow Engineering Physical Institute (MEPhI)
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences
- Issue: Vol 64, No 5 (2024)
- Pages: 688-700
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0016-7940/article/view/686200
- DOI: https://doi.org/10.31857/S0016794024050097
- EDN: https://elibrary.ru/QQAGOK
- ID: 686200
Cite item
Abstract
The results of the “Terminator” space experiment on board the International Space Station are given. Images of the Earth atmosphere are obtained in the near IR spectral range at limb-geometry of observations under the full Moon. The calculated vertical profiles of volume emission/scattering rate point that the aerosol layer occurs within the height region of 80 – 100 km in the Earth atmosphere. It is proposed that this layer is of meteoric origin. Estimations show that the size spectrum of aerosol particles lies within the region of 1 – 100 nm.
Keywords
Full Text

About the authors
A. N. Belyaev
Fedorov Institute of Applied Geophysics (IPG)
Author for correspondence.
Email: anb52@mail.ru
Russian Federation, Moscow
S. Sh. Nikolaishvili
Fedorov Institute of Applied Geophysics (IPG)
Email: ser58ge@gmail.ru
Russian Federation, Moscow
A. N. Omel’chenko
Fedorov Institute of Applied Geophysics (IPG)
Email: alexom@mail.ru
Russian Federation, Moscow
A. Yu. Repin
Fedorov Institute of Applied Geophysics (IPG)
Email: repin_a_yu@mail.ru
Russian Federation, Moscow
M. A. Poluarshinov
S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)
Email: mikhail.poluarshinov@rsce.ru
Russian Federation, Korolev, Moscow oblast
Yu. V. Smirnov
S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)
Email: yury.v.smirnov@rsce.ru
Russian Federation, Korolev, Moscow oblast
A. V. Strakhov
Scientific Production Enterprise Robis (NPP Robis)
Email: lexand@robis.ru
Russian Federation, Moscow
A. G. Batishchev
National Research Nuclear University Moscow Engineering Physical Institute (MEPhI)
Email: alexey-batschev@mail.ru
Russian Federation, Moscow
V. I. Stasevich
Scientific Production Enterprise Robis (NPP Robis)
Email: walter@robis.ru
Russian Federation, Moscow
Yu. V. Platov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences
Email: yplatov@mail.ru
Russian Federation, Moscow, Troitsk
References
- Аванесов Г.А., Строилов Н.А., Филиппова О.В., Шамис В.А., Эльяшев Я.Д. Фотометрическая модель звездного датчика ориентации // Современные проблемы дистанционного зондирования Земли из космоса. Т. 16. № 5. С. 75–84. 2019. https://doi.org/10.21046/2070-7401-2019-16-5-75-84
- Беляев А.Н., Николайшвили С.Ш., Омельченко А.Н., Репин А.Ю., Полуаршинов М.А., Смирнов Ю.В., Страхов А.В., Батищев А.Г., Стасевич В.И., Платов Ю.В. Аэрозольный слой нижней термосферы: I. наблюдение на фоне лимба Земли // Геомагнетизм и аэрономия. Т. 63. № 4. C. 455–466. 2023. https://doi.org/10.31857/S0016794023600400
- Гурвич А.С., Воробьёв В.В., Савченко С.А., Пахомов А.И., Падалка Г.И., Шефов Н.Н., Семёнов А.И. Ночное свечение верхней атмосферы в диапазоне 420 – 530 нм по измерениям на орбитальной станции “Мир” в 1999 г. // Геомагнетизм и аэрономия. Т. 42. № 4. С. 541–546. 2002.
- Килбас А.А. Интегральные уравнения: курс лекций. Мн.: БГУ, 143 с. 2005.
- Carrillo-Sánchez J.D., Nesvorný D., Pokorný P., Janches D., Plane J.M.C. Sources of cosmic dust in the Earth’s atmosphere // Geophys. Res. Lett. V. 43. № 23. P. 11979–11986. 2016. https://doi.org/10.1002/2016GL071697
- Carrillo-Sánchez J.D., Gómez-Martin J.C., Bones D.L., Nesvorný D., Pokorný P., Benna M., Flynn G.F., Plane J.M.C. Cosmic dust fluxes in the atmospheres of Earth, Mars and Venus // Icarus. V. 335. ID 113395. 2020. https://doi.org/10.1016/j.icarus.2019.113395
- Gardner C.S., Liu A.Z., Marsh D.R., Wuhu Feng, Plane J.M.C. Inferring the global cosmic dust influx to the Earth’s atmosphere from lidar observations of the vertical flux of mesospheric Na // J. Geophys. Res. – Space. V.119. № 9. P. 7870–7879. 2014. https://doi.org/10.1002/2014JA020383
- Gelinas L.J., Lynch K.A., Kelley M.C., Collins R.L., Baker S., Zhou Q., Friedman J.C. First observation of meteoritic charged dust in the tropical mesosphere // Geophys. Res. Lett. V. 25. № 21. P. 4047–4050. 1998. https://doi.org/10.1029/1998GL900089
- Hedin J., Giovane F., Waldemarsson T., Gumbel J., Blum J., Stroud R.M., Marlin L., Moser J., Siskind D.E., Jansson K., Saunders R.W., Summers M.E., Reissaus P., Stegman J., Plane J.M.C., Horanyi M. The MAGIC meteoric smoke particle sampler // J. Atmos. Sol.-Terr. Phy. V. 118. P. 127–144. 2014. https://doi.org/10.1016/j.jastp.2014.03.003
- Hervig M.E., Gordley L.L., Deaver L.E., Siskind D.E., Stevens M.H., Russell J.M., Bailey S.M., Megner L., Bardeen C.G. First satellite observations of meteoric smoke in the middle atmosphere // Geophys. Res. Lett. V. 36. № 18. ID L18805. 2009. https://doi.org/10.1029/2009GL039737
- Hervig M.E., Plane J.M.C., Siskind D.E., Wuhu Feng, Bardeen C.G., Bailey S.M. New global meteoric smoke observations from SOFIE: Insight regarding chemical composition, meteoric influx, and hemispheric asymmetry // J. Geophys. Res. – Atmos. V. 126. № 13. ID e2021JD035007. 2021. https://doi.org/10.1029/2021JD035007
- Lynch K.A., Gelinas L.J., Kelley M.C., Collins R.L., Widholm M., Rau D., MacDonald E., Liu Y., Ulwick J., Mace P. Multiple sounding rocket observations of charged dust in the polar winter mesosphere // J. Geophys. Res. – Space. V.110. № 3. ID A03302. 2005. https://doi.org/10.1029/2004JA010502
- Plane J.M.C., Feng W., Dawkins E.C.M. The mesosphere and metals: Chemistry and changes // Chem. Rev. V. 115. № 10. P. 4497–4541. 2023. https://doi.org/10.1021/cr500501m
- Plane J.M.C., Saunders R.W., Hedin J., Stegman J., Khaplanov M., Gumbel J., Lynch K.A., Bracikowski P.J., Gelinas L.J., Friedrich M., Blindheim S., Gausa M., Williams B.P. A combined rocket-borne and ground-based of the sodium layer and charged dust in the upper mesosphere // J. Atmos. Sol.-Terr. Phy. V. 118. P. 151–160. 2014. https://doi.org/10.1016/j.jastp.2013.11.008
- Rapp M., Hedin J., Strelnikova I., Friedrich M., Gumbel J., Lübken F.-J. Observations of positively charged nanoparticles in the nighttime polar mesosphere // Geophys. Res. Lett. V. 32. № 23. ID L23821. 2005. https://doi.org/10.1029/2005GL024676
- Saunders R.W., Plane J.M.C. A laboratory study of meteor smoke analogues: composition, optical properties and growth kinetics // J. Atmos. Sol.-Terr. Phy. V. 68. № 18. P. 2182–2202. 2006. https://doi.org/10.1016/j.jastp.2006.09.006
- Schulte P., Arnold F. Detection of upper atmospheric negatively charged microclusters by a rocket borne mass spectrometer // Geophys. Res. Lett. V.19. № 23. P. 2297–2300. 1992. https://doi.org/10.1029/92GL02631
- Yee J.H., Abreu V.J. Mesospheric 5577 Å green line and atmospheric motions – Atmospheric Explorer satellite observations // Planet. Space Sci. V. 35. № 11. P. 1389–1395. 1987. https://doi.org/10.1016/0032-0633(87)90051-1
Supplementary files
