Hygienic problems of using terahertz electromagnetic radiation (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of the work is to review and analyze domestic and foreign scientific works, systematize the scope of application of terahertz electromagnetic radiation (EMR) to determine hygienic problems in the field of health risk prevention in the development and use of modern radioelectronic devices.

The literature search was conducted on the databases: eLibrary, Web of Science, and fifty. During the study of scientific literature, from over fifty works were analyzed, there 36 sources were selected 36 sources corresponded to the purpose of the study. Today, the urgent tasks are to predict the parameters of a complex electromagnetic environment in open areas and inside buildings using mobile communication standards 4, 5 and 6G, scientific justification of hygienic standards for the combined effects of the electromagnetic factor, methodological approaches to monitoring EMR levels, including the development of domestic selective EMR meters in a wide range of frequencies (radio frequency and terahertz ranges).

Contribution:
Nikitina V.N. – the concept and design of the study; collection and processing of material; writing a text;
Dubrovskaya E.N. – collection of literature data; collection and processing of material; editing;
Kalinina N.I. – collection of literature data; collection and processing of material; editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: May 3, 2024 / Revised: June 6, 2024 / Accepted: June 19, 2024 /Published: September 10, 2024

About the authors

Valentina N. Nikitina

North-West Public Health Research Center

Author for correspondence.
Email: v.nikitina@s-znc.ru
ORCID iD: 0000-0001-8314-2044

MD, PhD, DSci., Head of the Department for the Study of Electromagnetic radiation of the Department of Physical Factors. North-West Public Health Research Center, 191036, St.-Petersburg, Russian Federation

e-mail: v.nikitinа@s-znc.ru

Russian Federation

Ekaterina N. Dubrovskaya

North-West Public Health Research Center

Email: noemail@neicon.ru
ORCID iD: 0000-0003-4235-378X

Researcher at the Department of Electromagnetic Radiation Research of the Department of Physical Factors, North-West Public Health Research Center, St.-Petersburg, 191036, Russian Federation

Russian Federation

Nina I. Kalinina

North-West Public Health Research Center

Email: noemail@neicon.ru
ORCID iD: 0000-0001-9475-0176

MD, PhD, senior researcher at the Department of Electromagnetic Radiation Research of the Department of Physical Factors, North-West Public Health Research Center, St.-Petersburg, 191036, Russian Federation

Russian Federation

References

  1. Ilina S.A. Collection of reports of the International Symposium «Millimeter Waves of Non-Thermal Intensity in Medicine» [Sbornik dokladov Mezhdunarodnogo simpoziuma «Millimetrovye volny neteplovoi intensivnosti v meditsine»]. Moscow; 1991. https://elibrary.ru/xljvmn (in Russian)
  2. Chuyan E.N., Tribrat N.S., Ravaeva M.Yu., Ananchenko M.N. Tissue Microhemodynamics: the Effect of Low-Intensity Electromagnetic Radiation in the Millimeter Range [Tkanevaya mikrogemodinamika: vliyanie nizkointensivnogo elektromagnitnogo izlucheniya millimetrovogo diapazona]. Simferopol: ARIAL; 2017. https://elibrary.ru/ysfpuy (in Russian)
  3. Nikitina V.N., Kalinina N.I., Lyashko G.G., Dubrovskaya E.N., Plekhanov V.P. Special features of the architecture of 5g networks. Probabilistic forecasting of the impact of electromagnetic fields of radio frequencies on the population (literature review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(8): 792–6. https://doi.org/10.47470/0016-9900-2021-100-8-792-796 https://elibrary.ru/vjzzwr (in Russian)
  4. Redmayne M., Maisch D.R. ICNIRP Guidelines’ exposure assessment method for 5G millimetre wave radiation may trigger adverse effects. Int. J. Environ. Res. Public Health. 2023; 20(7): 5267. https://doi.org/10.3390/ijerph20075267
  5. Petrov V., Bodet D., Singh A. Mobile near-field terahertz communications for 6G and 7G networks: Research challenges. Front. Comms. Net. 2023; 4. https://doi.org/10.3389/frcmn.2023.1151324
  6. Minin I.V., Minin O.V. Problems of terahertz radiation metrology in medicine. Vestnik SGUGiT. 2021; 26(3): 162–80. https://doi.org/10.33764/2411-1759-2021-26-3-162-180 https://elibrary.ru/plllzv (in Russian)
  7. Cherkasova O.P., Serdyukov D.S., Ratushnyak A.S., Nemova E.F., Kozlov E.N., Shidlovskii Yu.V., Zaytsev K.I., Tuchin V.V. Effects of terahertz radiation on living cells: a review. Optika i spektroskopiya. 2020; 128(6): 852–64. https://doi.org/10.1134/S0030400X20060041 https://elibrary.ru/oeqprf (in Russian)
  8. Bondarev A. Terahertz radiation. Review of modern technologies; 2023. Available at: https://habr.com/ru/companies/etmc_exponenta/articles/713944 (in Russian)
  9. Cong M., Li W., Liu Y., Bi J., Wang X., Yang X., et al. Biomedical application of terahertz imaging technology: a narrative review. Quant. Imaging. Med. Surg. 2023; 13(12): 8768–86. https://doi.org/10.21037/qims-23-526
  10. Zaitsev K.I., Dolganova I.N., Chernomyrdin N.V., Komandin G.A., Lavrukhin D.V., Reshetov I.V., et al. Application of therahertz technologies in biophotonics. Part 1: methods of terahertz spectroscopy and imaging of tissues. Fotonika. 2019; 13(7): 680–7. https://doi.org/10.22184/1993-7296.FRos.2019.13.7.680.687 https://elibrary.ru/kahdtu (in Russian)
  11. Isaev V.M., Kabanov I.N., Komarov V.V., Meshchanov V.P. Modern radio-electronic systems of terahertz frequency range. Doklady TUSURa. 2014; (4): 5–21. https://elibrary.ru/rohjxx (in Russian)
  12. Gareev G., Luchinin V. Applications of terahertz radiation in biology and medicine. Nanoindustriya. 2014; (6): 34–44. https://elibrary.ru/sqcebx (in Russian)
  13. Chekrygin V.E. Terahertz a range on the guard of health. Izvestiya YuFU. Tekhnicheskie nauki. 2009; (7): 102–7. https://elibrary.ru/kvbcpf (in Russian)
  14. Kirichuk V.F., Antipova O.N., Velikanov V.V., Velikanova T.S. Anti-stress effect teraherts waves at a frequency of atmospheric oxygen on the change of parameters of linear flow velocity in the experiment. Fundamental’nye issledovaniya. 2013; (5–1): 82–7. https://elibrary.ru/pzbqod (in Russian)
  15. Svistunov A.A., Tsymbal A.A., Litvitskii P.F., Budnik I.A. Experimental and clinical rational for terahertz therapy at the frequency of molecular oxygen and nitrogen oxide absorption and emission in different pathologies. Vestnik Rossiiskii akademii meditsinskikh nauk. 2017; 72(5): 365–74. https://doi.org/10.15690/vramn817 https://elibrary.ru/zriwtd (in Russian)
  16. Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A., Zaytsev K.I., Ozheredov I.A., Cherkasova O.P., et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018; 62: 1–77. https://doi.org/10.1016/j.pquantelec.2018.10.001
  17. Zaitsev K.I., Chernomyrdin N.V., Kudrin K.G., Reshetov I.V., Yurchenko S.O. Terahertz spectroscopy of pigmentary skin nevi in vivo. Opt. Spectrosc. 2015; 119(3): 404–10. https://doi.org/10.1134/S0030400X1509026X
  18. Aksenov V.N., Angeluts A.A., Balakin A.V., Ivanov S.V., Ozheredov I.A., Solyankin P.M., et al. A multi-frequency terahertz quantum-cascade laser for atmospheric probing and detection of small impurities. Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya. 2019; (6): 58–64. https://doi.org/10.3103/S002713491906002X https://elibrary.ru/rbyedx (in Russian)
  19. Terahertz for painting: how research by scientists from Russia and France helps to restore art objects; 2019. Available at: https://news.itmo.ru/ru/science/photonics/news/8653/ (in Russian)
  20. Skryl’ A.S., Tsarev M.V. The use of terahertz radiation for the study of art objects. Electronic methodological guide; 2011. Available at: http://laser.unn.ru/sites/default/files/terahertz-for-art.pdf (in Russian)
  21. Volkov V.G. Quantum cascade lasers and their application in safety and communication systems. Sistemy upravleniya, svyazi i bezopasnosti. 2016; (1): 10–41. https://elibrary.ru/votnah (in Russian)
  22. Unlocking the potential of Terahertz radio spectrum. The role of spectrum management; 2021. Available at: https://www.ofcom.org.uk/__data/assets/pdf_file/0032/228929/terahertz-spectrum-paper.pdf
  23. Imran M.A., Abbasi Q.H. Exploiting Rarely Capitalised Spectrum Future Technologies using THz and beyond THz bands; 2020. Available at: https://pixl8-cloud-techuk.s3.eu-west-2.amazonaws.com
  24. Gaiduchenko I.A., Gol’tsman G.N., Ozhegov R.V., Shurakov A.S. Terahertz Photonics. Collective Monograph [Teragertsovaya fotonika. Kollektivnaya monografiya]. Moscow; 2023. https://elibrary.ru/djcszp (in Russian)
  25. Farhad A., Pyun J.Y. Terahertz Meets AI: The State of the Art. Sensors (Basel). 2023; 23(11): 5034. https://doi.org/10.3390/s23115034
  26. Sarieddeen H., Alouini M.S., Al-Naffouri T.Y. Terahertz-Band Ultra-Massive Spatial Modulation MIMO. IEEE J. Sel. Areas Commun. 2019; 37: 2040–52. https://doi.org/10.1109/JSAC.2019.2929455
  27. Saad W., Bennis M., Chen M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019; 34: 134–42. https://doi.org/10.1109/MNET.001.1900287
  28. Alraih S., Shayea I., Behjati M., Nordin R., Abdullah N.F., Abu-Samah A., et al. Revolution or evolution? Technical requirements and considerations towards 6G mobile communications. Sensors (Basel). 2022; 22(3): 762. https://doi.org/10.3390/s22030762
  29. Kucheryavyi E.A., Molchanov D.A., Petrov V.I. Open research problems and possible applications for terahertz band wireless network. Informatsionnye tekhnologii i telekommunikatsii. 2017; 5(1): 54–67. https://elibrary.ru/ypqdkv (in Russian)
  30. Akyildiz I.F., Jornet J.M. Realizing ultra-massive MIMO communication in the (0.06–10) terahertz band. Nano Communication Networks. 2016; 8: 46–54. https://doi.org/10.1016/j.nancom.2016.02.001
  31. Khofizov S.A., Dolbich Yu.M. Evaluation of future communications: from 5G to 6G. Ekonomika i kachestvo sistem svyazi. 2022; (2): 24–31. https://elibrary.ru/bdgtzv (in Russian)
  32. Bakulin M.G., Kreindelin V.B. The problem of spectral efficiency and capacity increase in perspective 6g communication systems. T-Comm: Telekommunikatsii i transport. 2020; 14(2): 25–31. https://doi.org/10.36724/2072-8735-2020-14-2-25-31 https://elibrary.ru/hhvlbc (in Russian)
  33. Bondarev A. What physical foundations will the 6G technology be based on? What is known today; 2023. Available at: https://habr.com/ru/companies/etmc_exponenta/articles/722308/ (in Russian)
  34. Bariah L., Mohjazi L., Muhaidat S., Sofotasios P.C., Kurt G.K., Yanikomeroglu H., et al. A prospective look: key enabling technologies, applications and open research topics in 6G networks. IEEE Access. 2020; 8(29): 174792–820. Available at: https://urn.fi/URN:NBN:fi:tuni-202112219441
  35. Letaief K.B., Chen W., Shi Y., Zhang J., Zhang Y.J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Comm. Mag. 2019; 57(8): 84–90. https://doi.org/10.1109/MCOM.2019.1900271
  36. Tikhvinskii V., Devyatkin E., Smirnov Yu., Ivankovich M., Veerpalu V. Prospects for the use of terahertz frequency band in 6G networks, part 2. Pervaya milya. 2022; (8): 10–6. https://doi.org/10.22184/2070-8963.2022.108.8.10.16 https://elibrary.ru/cxecca (in Russian)
  37. Tikhvinskii V.O., Terent’ev S.V., Koval’ V.A., Devyatkin E.E. Development of Mobile Communication Networks from 5G Advanced to 6G: Projects, Technologies, Architecture [Razvitie setei mobil’noi svyazi ot 5G Advanced k 6G: proekty, tekhnologii, arkhitektura]. Moscow: Tekhnosfera; 2023. (in Russian)
  38. Wilmink G.J., Grundt J.E. Invited review article: current state of research on biological effects of terahertz radiation. J. Infrared Millim. Terahertz Waves. 2011; 32(10): 1074–122. https://doi.org/10.1007/s10762-011-9794-5
  39. Alexandrov L.B., Rasmussen K.Ø., Bishop A.R., Alexandrov B.S. Evaluating the role of coherent delocalized phonon-like modes in DNA cyclization. Sci. Rep. 2017; 7(1): 9731. https://doi.org/10.1038/s41598-017-09537-y
  40. Ivanov A.N. Regulatory effects of wave terahertz frequencies. Byulleten’ meditsinskikh internet-konferentsii. 2012; 2(6): 392–9. https://elibrary.ru/oyzphj (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Nikitina V.N., Dubrovskaya E.N., Kalinina N.I.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.