Expression of the TR53 oncosuppressor gene modified with benzo[a]pyrene and the SARS-COV-2 vaccine antigen in an in vitro experiment

Cover Page

Cite item

Full Text

Abstract

Introduction. The impact of chemical and biological environmental factors is associated with the risk of a genetic predisposition to the development of cardiovascular and cancer-associated diseases, which determines the relevance of the search for genetic indicator markers of early disorders in the mRNA structure.

Materials and methods. The analysis of TP53 rs1042522 gene polymorphism, as well as the relative normalized expression level of TP53 hs1034249_m1 transcript, in whole blood cell culture in healthy volunteers, both spontaneous and induced by 24-hour incubation with benzo[a]pyrene and SARS-CoV-2 vaccine antigen (at concentrations of 0.006 mg/ml), was conducted.

Results. Comparative analysis of spontaneous and antigen-induced levels of TP53 hs1034249_m1 mRNA expression allowed establishing individual and group values of relative expression associated with the polymorphism features of the TP53 rs1042522 gene. Benzo[a]pyrene and SARS-CoV-2 were found to have opposite effects on the expression of hs1034249_m1 TP53 genes in the case of the CG rs1042522 genotype, while the combined effect of benzo[a]pyrene and SARS-CoV-2, which reflected the inhibition of the expression of hs00900055_m1 of the TP53 gene was associated with the GG genotype.

The limitations of the study are the use of a relatively small sample and a limited number of whole blood samples.

Conclusion. The ability of benzo[a]pyrene and SARS-CoV-2 at concentrations of 6 µg/L to modify the expression of the TP53 apoptosis gene in vitro has been shown, which makes it possible to consider the increase in the expression of hs00900055_m1 of the TP53 gene induced by benzo[a]pyrene as one of the mechanisms for aggravating the course of viral infections (SARS-CoV-2) in connection with loss of p53-controlling for the development of inflammation (its proliferative phase) for owners of the heterozygous variant of CG TP53 rs1042522. In the case of variant monozygotic polymorphism GG TP53 rs1042522, the combination of benzo[a]pyrene and SARS-CoV-2 leads to inhibition of the expression of hs00900055_m1 mRNA of the TP53 gene, which is phenotypically reflected by the formation of asthenia, immunosuppression and onco-proliferative complications. The hs00900055_m1 transcript of the TP53 gene is recommended as an indicator for the tasks of diagnosing early disorders associated with the combination of SARS-CoV-2+ benzo[a]pyrene. The experiment simulates the natural conditions of real combinations of influencing factors.

Compliance with ethical standards. The study was performed in accordance with the World Medical Association’s Declaration of Helsinki “Ethical principles for conducting medical research involving people as subjects” and the National Standard of the Russian Federation GOST-R 52379-2005 “Good Clinical Practice” (ICH E6 GCP).

Contribution:
Dolgikh O.V. — the concept and design of the study, editing, responsibility for the integrity of all parts of the article;
Kazakova O.A. — concept and design of research, collection and processing of material, writing of text;
Zaitseva N.V. — editing, approval of the final version of the article.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: August 21, 2023 / Accepted: September 26, 2023 / Published: November 20, 2023

About the authors

Oleg V. Dolgikh

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: fake@neicon.ru
ORCID iD: 0000-0003-4860-3145

Доктор медицинских наук, профессор, заведующий отделом иммунобиологических методов диагностики ФБУН «ФНЦ МПТ УРЗН» 614045, Пермь, Российская Федерация, ул. Монастырская, 82

e-mail: oleg@fcrisk.ru

Russian Federation

Olga A. Kazakova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Author for correspondence.
Email: chakina2011@yandex.ru
ORCID iD: 0000-0002-0114-3930

MD, junior researcher at the laboratory of Immunogenetics of the Federal Research Center for Medical and Preventive Technologies of Public Health Risk Management, Perm, 614045, Russia

e-mail: chakina2011@yandex.ru

Russian Federation

References

  1. Zaytseva N.V., Dolgikh O.V., Dianova D.G. Haptens of Natural and Man-Made Origin and Cell Death [Gapteny prirodnogo i tekhnogennogo proiskhozhdeniya i kletochnaya gibel’]. Perm’; 2020. https://elibrary.ru/mltypp (in Russian)
  2. Makarov V.Z., Gusev V.A., Volkov Yu.V., Zatonskiy V.A., Nevryuev A.M. Benzopyrene in the atmosphere of Saratov region cities. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Nauki o Zemle. 2019; 19(1): 12–7. https://doi.org/10.18500/1819-7663-2019-19-1-12-17 https://elibrary.ru/zadhrz
  3. Shelepova V.S., Zvyagintseva A.V. Benzapyrene – chemical and biological problem of modernity (C20H12). Pozharnaya bezopasnost’: problemy i perspektivy. 2017; 1(8): 477–80. https://elibrary.ru/zpejix
  4. Chelakova Yu.A., Kazakova O.A., Dolgikh O.V. Analysis of cell death indicators by employees under production exposure to phenol. Rossiyskiy immunologicheskiy zhurnal. 2018; 12(4): 779–81. https://doi.org/10.31857/S102872210002673-5 https://elibrary.ru/vrwjgt
  5. Zaytseva N.V., Ulanova T.S., Dolgikh O.V., Nurislamova T.V. Association analysis-based study results in evaluating the aromatic hydrocarbons contamination level of bio media and immunotropic effects of oil and gas enterprises employees from various work experience groups. Yakutskiy meditsinskiy zhurnal. 2020; (3): 25–8. https://doi.org/10.25789/YMJ.2020.71.06 https://elibrary.ru/daaycg
  6. Mirgayazova R., Khadiullina R., Chasov V., Mingaleeva R., Miftakhova R., Rizvanov A., et al. Therapeutic editing of the TP53 gene: Is CRISPR/Cas9 an option? Genes (Basel). 2020; 11(6): 704. https://doi.org/10.3390/genes11060704
  7. Boldyreva M.N. SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors for the development of infections. Immunologiya. 2020: 41(3): 197–205. https://doi.org/10.33029/0206-4952-2020-41-3-197-205 https://elibrary.ru/cpxxja
  8. Pobyarzhin V.V. Changes in tp53 suppressor gene expression in rat tissues in experimental ascariasis at different observation periods during reproduction of the rat glioma c6 tumor model in situ. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2022; (9): 9. https://doi.org/10.23670/IRJ.2022.123.20 https://elibrary.ru/oqjsec
  9. Gamisonia A.M. Genocard. The Genetic Encyclopedia. Gene TP53; 2019. Available at: https://www.genokarta.ru/gene/TP53 (in Russian)
  10. Euroonco. Pylev A.L. Protein p53; 2021. Available at: https://www.euroonco.ru/terms-from-a-z/belok-p53
  11. Malik D.E., David R.M., Gooderham N.J. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch. Toxicol. 2018; 92(10): 3223–39. https://doi.org/10.1007/s00204-018-2291-z
  12. Harford J.B., Kim S.S., Pirollo K.F., Chang E.H. TP53 gene therapy as a potential treatment for patients with COVID-19. Viruses. 2022; 14(4): 739. https://doi.org/10.3390/v14040739
  13. Zaytseva N.V., Zemlyanova M.A., Dolgikh O.V. Genomic, transcriptomic and proteomic technologies as a modern tool for health disorders diagnostics, associated with the impact of environmental factors. Gigiena i sanitariya. 2020; 99(1): 6–12. https://doi.org/10.33029/0016-9900-2020-99-1-6-12 https://elibrary.ru/pipsea
  14. Flynt E., Bisht K., Sridharan V., Ortiz M., Towfic F., Thakurta A. Prognosis, biology, and targeting of TP53. Dysregulation in multiple myeloma. Cells. 2020; 9(2): 287. https://doi.org/10.3390/cells9020287
  15. Kolyadina I.V., Poddubnaya I.V., van de Velde C.J., Kuppen P.J., Liefers G.J., Dekker-Ensink N.G., et al. Prognostic value of p53 expression in patients with stage I breast cancer. Sovremennaya onkologiya. 2013; 15(2): 17–21. https://elibrary.ru/pjumzl
  16. Russian Society of Clinical Oncology (RUSSCO). Kopnin B.P. Tumor suppressors and mutator genes. Available at: https://rosoncoweb.ru/library/pub/02/03.php (in Russian)
  17. Park S.Y., Lee S.M., Ye S.K., Yoon S.H., Chung M.H., Choi J. Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment. Toxicol. Lett. 2006; 167(1): 27–33. https://doi.org/10.1016/j.toxlet.2006.08.011
  18. Nikonoshina N.A., Dolgikh O.V., Zaitseva N.V. Immune status of the children living in industrial developed region in the conditions of chronic exposition of anthropogenic chemical factors (by the example of benz(a)pyren, phenol and mercury). Adv. Health Sci. Res. 2022; 42: 167–71.
  19. Lizarraga D., Gaj S., Brauers K.J., Timmermans L., Kleinjans J.C., Delft J.H. Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem. Res. Toxicol. 2012; 25(4): 838–49. https://doi.org/10.1021/tx2003799

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Dolgikh O.V., Kazakova O.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.