Indicators of oxidative stress in blood samples of indigenous residents and newcomers in the Arctic zone of Yakutia
- Authors: Khripach L.V.1, Knyazeva T.D.1, Koganova Z.I.1, Zheleznyak E.V.1, Zagaynova A.V.1
-
Affiliations:
- Centre for Strategic Planning, FMBA of Russia
- Issue: Vol 102, No 7 (2023)
- Pages: 624-631
- Section: ENVIRONMENTAL HYGIENE
- Published: 31.08.2023
- URL: https://jdigitaldiagnostics.com/0016-9900/article/view/638497
- DOI: https://doi.org/10.47470/0016-9900-2023-102-7-624-631
- EDN: https://elibrary.ru/ugxspy
- ID: 638497
Cite item
Full Text
Abstract
Introduction. Oxidative stress is non-specific reaction of human organism in response to various damaging factors, including climatic.
The purpose of the study. To compare markers of oxidative stress and corresponding age dependences in blood samples of indigenous (evolutionarily adapted) and newcomer inhabitants of the Arctic zone of Yakutia.
Materials and methods. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and malondialdehyde content (MDA) were determined in blood lysates of indigenous (n=100) and newcomers (n=37) residents of Chokurdakh and Tiksi settlements. The compared subsamples did not differ in age (medians 34 and 37 years, p=0.407).
Results. No significant differences were found between newcomers and natives in terms of SOD, CAT and MDA content in the blood. The GPx activity of newcomers was 1.2 times higher than that of the natives (27.8 [22.4; 32.0] and 23.4 [19.2; 29.4] U/g Hb, p=0.042), but rapidly decreased with age (R= –0.549; p=0.001) in parallel with the increase in MDA content (R=0.420; p=0.01), whereas the indigenous people had no age-related changes in GPx and MDA.
Limitations. Associated with a comparatively modest sample size (137 persons).
Conclusion. According to modern gerontology, age-related trends in enzyme activity arise due to changes in regulation of corresponding genes and reflect the rate of aging of the population. So it can be assumed that our data, which show accelerated aging of Arctic alien inhabitants compared to the indigenous ones, can be explained by genetic polymorphism of GPx1 transcription factors.
Compliance with ethical standards. Management of depersonalized population survey and the forms of informed consent for biosampling were agreed with the Local Ethics Committee), Protocol No. 30 of 06/17/2021.
Contributions:
Khripach L.V. — research concept and design, biochemical assays, mathematical analysis, writing text;
Zagainova A.V. — research concept and design, organization of blood sample bank;
Knyazeva T.D., Koganova Z.I. — biochemical assays;
Zheleznyak E.V. — collection of literary data.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgment. The study was carried out as part of the State Assignment of the Centre for Strategic Planning of the Federal Medical and Biological Agency of Russia.
Received: April 18, 2023 / Accepted: June 7, 2023 / Published: August 30, 2023
About the authors
Ludmila V. Khripach
Centre for Strategic Planning, FMBA of Russia
Author for correspondence.
Email: LKhripach@cspmz.ru
ORCID iD: 0000-0003-0170-3085
SPIN-code: 2776-9670
MD, PhD, DSci., leading researcher of the Department of Preventive Toxicology and Biomedical Research, Centre for Strategic Planning of FMBA of Russia, Moscow, 119992, Russian Federation.
e-mail: LKhripach@cspmz.ru
Russian FederationTatiana D. Knyazeva
Centre for Strategic Planning, FMBA of Russia
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5279-5018
Russian Federation
Zoya I. Koganova
Centre for Strategic Planning, FMBA of Russia
Email: noemail@neicon.ru
ORCID iD: 0000-0002-4622-8110
Russian Federation
Evgeniia V. Zheleznyak
Centre for Strategic Planning, FMBA of Russia
Email: noemail@neicon.ru
ORCID iD: 0000-0001-9339-9310
Russian Federation
Anzhelika V. Zagaynova
Centre for Strategic Planning, FMBA of Russia
Email: noemail@neicon.ru
ORCID iD: 0000-0003-4772-9686
Russian Federation
References
- Davies P.L. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci. 2014; 39(11): 548–55. https://doi.org/10.1016/j.tibs.2014.09.005
- Sun S., Ding H., Wang D., Han S. Identifying antifreeze proteins based on key evolutionary information. Front. Bioeng. Biotechnol. 2020; 26(8): 244. https://doi.org/10.3389/fbioe.2020.00244
- Krembs C., Eicken H., Junge K., Deming J.W. High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. I: Oceanogr. Res. Pap. 2002; 49(12): 2163–81. https://doi.org/10.1016/S0967-0637(02)00122-X
- Poryadina L.N., Prokop’ev I.A., Konoreva L.A., Chesnokov S.V., Sleptsov I.V., Filippova G.V., et al. Adaptive biochemical mechanisms that ensure resistance of lichens to extreme environmental conditions (review). Prirodnye resursy Arktiki i Subarktiki. 2018; 26(4): 109–17. https://doi.org/10.31242/2618-9712-2018-26-4-109-117 https://elibrary.ru/fufnvx (in Russian)
- Li N.G. Physiological mechanisms of insect adaptation to the cold and dry climate of Yakutia: Diss. Kazan’; 2014. (in Russian)
- Hallmark B., Karafet T.M., Hsieh P., Osipova L.P., Watkins J.C., Hammer M.F. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Mol. Biol. Evol. 2019; 36(2): 315–27. https://doi.org/10.1093/molbev/msy211
- Malyarchuk B.A., Derenko M.V., Denisova G.A., Litvinov A.N. Distribution of the arctic variant of the CPT1A gene in indigenous populations of Siberia. Vavilovskiy zhurnal genetiki i selektsii. 2016; 20(5): 571–5. https://doi.org/10.18699/VJ16.130 https://elibrary.ru/wycwdb (in Russian)
- Cardona A., Pagani L., Antao T., Lawson D.J., Eichstaedt C.A., Yngvadottir B., et al. Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS One. 2014; 9(5): e98076. https://doi.org/10.1371/journal.pone.0098076
- Stepanov V.A., Khar’kov V.N., Vagaytseva K.V., Bocharova A.V., Kazantsev A.Yu., Popovich A.A., et al. Search for genetic markers of climatic adaptation in populations of North Eurasia. Genetika. 2017; 53(11): 1172–83. https://doi.org/10.1134/S1022795417110114 https://elibrary.ru/uxzalk (in Russian)
- Kaznacheev V.P., Kulikov V.Yu., Panin L.E., Sokolov V.P., Lyakhovich V.V., Shorin Yu.P., et al. Mechanisms of Human Adaptation in Conditions of High Latitudes [Mekhanizmy adaptatsii cheloveka v usloviyakh vysokikh shirot]. Leningrad: Meditsina; 1980. https://elibrary.ru/rzybyn (in Russian)
- Boyko E.R. Physiological and Biochemical Foundations of Human Life in the North [Fiziologo-biokhimicheskie osnovy zhiznedeyatel’nosti cheloveka na Severe]. Ekaterinburg; 2005. https://elibrary.ru/tqogjp (in Russian)
- Leonard W.R., Snodgrass J.J., Sorensen M.V. Metabolic adaptations in indigenous Siberian populations. Annu. Rev. Anthropol. 2005; 34: 451–71. https://doi.org/10.1146/annurev.anthro.34.081804.120558
- Khasnulin V.I., Khasnulin P.V. Modern concepts of the mechanisms forming northern stress in humans in high latitudes. Ekologiya cheloveka. 2012; (1): 3–11. https://elibrary.ru/osklqp (in Russian)
- Bichkaeva F.A., Tipisova E.V., Volkova N.I. Adaptation of cholesterol homeostasis and hormone system of pituitary and thyroid glands in the indigenous population of the North. Aviakosmicheskaya i ekologicheskaya meditsina. 2013; 47(4): 19–20. https://elibrary.ru/sypkhp (in Russian)
- Olesova L.D., Okhlopkova E.D., Grigorieva A.A., Semenova E.I., Krivoshapkina Z.N. Peroxidative intensity in Yakutia residents in zones with a high rate of oncological morbidity. Yakut Med. J. 2019; (2): 23–5.
- Nikolaev V.M., Chirikova N.K., Sofronova S.I. Changes in lipid peroxidation indexes of the Republic of Sakha (Yakutia) population depending on residence location. IOP Conf. Ser.: Earth Environ. Sci. 2021; 670(1): 1–6.
- Voss P., Siems W. Clinical oxidation parameters of aging. Free Radic. Res. 2006; 40(12): 1339–49. https://doi.org/10.1080/10715760600953859
- Del Valle L.G. Oxidative stress in aging: Theoretical outcomes and clinical evidences in humans. Biomed. Pharmacother. 2010. https://doi.org/10.1016/j.biopha.2010.09.010
- Stocks J., Dormandy T.L. A direct thiobarbituric acid-reacting chromogen in human red blood cells. Clin. Chim. Acta. 1969; 27(1): 117–20. https://doi.org/10.1016/0009-8981(70)90383-9
- Sun N., Zigmun S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Analyt. Biochem. 1978; 90(1): 81–9. https://doi.org/10.1016/0003-2697(78)90010-6
- Sirota T.P. Method for determining the antioxidant activity of superoxide dismutase and chemical compounds. Patent RF 2144674C1; 2000. (in Russian)
- Korolyuk M.A., Ivanova I.G., Tokarev V.E. Method for determining catalase activity. Laboratornoe delo. 1988; (1): 16–9. https://elibrary.ru/sicxej (in Russian)
- Arutyunyan A.V., Dubinina E.E., Zybina N.N. Methods for Assessing Free Radical Oxidation and the Antioxidant System of the Organism [Metody otsenki svobodnoradikal’nogo okisleniya i antioksidantnoy sistemy organizma]. St. Petersburg: Foliant; 2000. (in Russian)
- Ceballos-Picot I., Trivier J.M., Nicole A., Sinet P.M., Thevenin M. Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin. Chem. 1992; 38(1): 66–70.
- Andersen H.R., Nielsen J.B., Nielsen F., Grandjean P. Antioxidative enzyme activities in human erythrocytes. Clin. Chem. 1997; 43(4): 562–8.
- Bolzan A.D., Bianchi M.S., Bianchi N.O. Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: influence of sex, age and cigarette smoking. Clin. Biochem. 1997; 30(6): 449–54. https://doi.org/10.1016/s0009-9120(97)00047-7
- Inal M.E., Kanbak G., Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin. Chim. Acta. 2001; 305(1-2): 75–80. https://doi.org/10.1016/s0009-8981(00)00422-8
- Ozbay B., Dulger H. Lipid peroxidation and antioxidant enzymes in Turkish population: relation to age, gender, exercise, and smoking. Tohoku J. Exp. Med. 2002; 197(2): 119–24. https://doi.org/10.1620/tjem.197.119
- Bogdanska J.J., Korneti P., Todorova B. Erythrocyte superoxide dismutase, glutathione peroxidase and catalase activities in healthy male subjects in Republic of Macedonia. Bratisl. Lek. Listy. 2003; 104(3): 108–14.
- Junqueira V.B., Barros S.B., Chan S.S., Rodrigues L., Giavarotti L., Abud R.L., et al. Aging and oxidative stress. Mol. Aspects Med. 2004; 25(1–2): 5–16. https://doi.org/10.1016/j.mam.2004.02.003
- Mendoza-Nunez V.M., Ruiz-Ramos M., Sanchez-Rodríguez M.A., Retana-Ugalde R., Munoz-Sanchez J.L. Aging-related oxidative stress in healthy humans. Tohoku J. Exp. Med. 2007; 213(3): 261–8. https://doi.org/10.1620/tjem.213.261
- Cecerska-Heryć E., Krauze K., Szczęśniak A., Goryniak-Mikołajczyk A., Serwin N., Śleboda-Taront D., et al. Activity of erythrocyte antioxidant enzymes in healthy women depends on age, BMI, physical activity, and diet. J. Health Popul. Nutr. 2022; 41(1): 35. https://doi.org/10.1186/s41043-022-00311-z
- Muchová J., Sustrová M., Garaiová I., Liptáková A., Blazícek P., Kvasnicka P., et al. Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down syndrome patients. Free Radic. Biol. Med. 2001; 31(4): 499–508. https://doi.org/10.1016/s0891-5849(01)00609-8
- Sánchez-Rodríguez M.A., Retana-Ugalde R., Ruíz-Ramos M., Muñoz-Sánchez J.L., Vargas-Guadarrama L.A., Mendoza-Núñez V.M. Efficient antioxidant capacity against lipid peroxide levels in healthy elderly of Mexico City. Environ. Res. 2005; 97(3): 322–9. https://doi.org/10.1016/j.envres.2004.05.006
- Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011; 15(7): 1957–1997. https://doi.org/10.1089/ars.2010.3586
- Almondes K.G.S., Cardoso B.R., Cominetti C., Nogueira N.N., Marreiro D.N., Oliveira T.F., et al. The redox balance of healthy Brazilian adults is associated with GPX1 Pro198Leu and -602 A/G polymorphisms, selenium status, anthropometric and lifestyle parameters. Food & Function. 2018; 9(10): 5313–22. https://doi.org/10.1039/C8FO01621F
- Zhao Y., Wang H., Zhou J., Shao Q. Glutathione peroxidase GPX1 and its dichotomous roles in cancer. Cancers (Basel). 2022; 14(10): 2560. https://doi.org/10.3390/cancers14102560
- Merante F., Altamentova S.M., Mickle D.A., Weisel R.D., Thatcher B.J., Martin B.M., et al. The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension. Mol. Cell. Biochem. 2002; 229(1-2): 73–83. https://doi.org/10.1023/a:1017921110363
- Kitani K. What really declines with age? The Hayflick Lecture for 2006 35th American Aging Association. Age (Dordr.). 2007; 29(1): 1–14. https://doi.org/10.1007/s11357-006-9014-8
Supplementary files
