Identification of filamentous fungi with MALDI-TOF: methods and perspectives (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review addresses various attempts of adaptation of MALDI-TOF method for identification of filamentous fungi. This method has become a golden standard in laboratory diagnostics. Accuracy, simplicity, and low cost per analysis promote making it a widespread technology. However, attempts of applying it to filamentous fungi face many problems. Solid cell wall of fungi mycelium is an obstacle to cell lysis and protein ionization. Heterogeneity of cells in culture – old and young hyphs, conidia etc, provides variety in ion patterns and prevents forming single reproducible spectra for the analyzed isolate. These issues are addressed by various optimizations in methods of cultivation, sampling, protein extraction, spectra recording, and data analysis. Commercial systems exist, offering ready solutions of the problem; however, these systems also require adjustments to be effective in the clinical laboratory practice.Contribution of the authors: Kurbatova I.V. – concept and design of the study, editing; Rakitina D.V. – literature search, writing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final versionConflict of interest. The authors declare no conflict of interest.Acknowledgment. The research was carried out within the framework of the research work “Development of unified methods, including sampling, for the determination of microbiological and parasitological contamination of wastewater” (code “Wastewater”).Received: August 27, 2024 / Accepted: December 3, 2024 / Published: April 30, 2025

About the authors

Irina V. Kurbatova

Centre for Strategic Planning of the Federal medical and biological agency

Email: IKurbatova@cspfmba.ru

Daria V. Rakitina

Centre for Strategic Planning of the Federal medical and biological agency

Email: Rakitina@cspmz.ru

References

  1. Nenoff P., Erhard M., Simon J.C., Muylowa G.K., Herrmann J., Rataj W., et al. MALDI-TOF mass spectrometry – a rapid method for the identification of dermatophyte species. Med. Mycol. 2013; 51(1): 17–24. https://doi.org/10.3109/13693786.2012.685186
  2. Becker P., Normand A.C., Vanantwerpen G., Vanrobaeys M., Haesendonck R., Vercammen F., et al. Identification of fungal isolates by MALDI-TOF mass spectrometry in veterinary practice: validation of a web application. J. Vet. Diagn. Invest. 2019; 31(3): 471–4. https://doi.org/10.1177/1040638719835577
  3. Giordano A.L.P.L., Pontes L., Beraquet C.A.G., Lyra L., Schreiber A.Z. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry azole susceptibility assessment in Candida and Aspergillus species. Mem. Inst. Oswaldo Cruz. 2023; 118: e220213. https://doi.org/10.1590/0074-02760220213
  4. Reeve M.A., Buddie A.G., Pollard K.M., Varia S., Seier M.K., Offord L.C., et al. A highly-simplified and inexpensive MALDI-TOF mass spectrometry sample-preparation method with broad applicability to microorganisms, plants, and insects. J. Biol. Methods. 2018; 5(4): e103. https://doi.org/10.14440/jbm.2018.261
  5. Sanguinetti M., Posteraro B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017; 55(2): 369–79. https://doi.org/10.1128/JCM.01640-16
  6. Coulibaly O., Marinach-Patrice C., Cassagne C., Piarroux R., Mazier D., Ranque S. Pseudallescheria/Scedosporium complex species identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Med. Mycol. 2011; 49(6): 621–6. https://doi.org/10.3109/13693786.2011.555424
  7. Reeve M.A., Bachmann D. MALDI-TOF MS protein fingerprinting of mixed samples. Biol. Methods. Protoc. 2019; 4(1): bpz013. https://doi.org/10.1093/biomethods/bpz013
  8. Buskirk A.D., Hettick J.M., Chipinda I., Law B.F., Siegel P.D., Slaven J.E., et al. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 2011; 411(1): 122–8. https://doi.org/10.1016/j.ab.2010.11.025
  9. Kondori N., Erhard M., Welinder-Olsson C., Groenewald M., Verkley G., Moore E.R. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. FEMS Microbiol. Lett. 2015; 362(1): 1–6. https://doi.org/10.1093/femsle/fnu016
  10. Lau A.F., Drake S.K., Calhoun L.B., Henderson C.M., Zelazny A.M. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013; 51(3): 828–34. https://doi.org/10.1128/JCM.02852-12
  11. Honsig C., Selitsch B., Hollenstein M., Vossen M.G., Spettel K., Willinger B. Identification of filamentous fungi by MALDI-TOF mass spectrometry: evaluation of three different sample preparation methods and validation of an in-house species cutoff. J. Fungi (Basel). 2022; 8(4): 383. https://doi.org/10.3390/jof8040383
  12. Ao K., Li X., Zhang W., Chen Z., Liu Y., Shu L., et al. Evaluation of the Autof ms1000 mass spectrometry for rapid clinical identification of filamentous fungi. BMC Microbiol. 2023; 23(1): 228. https://doi.org/10.1186/s12866-023-02968-w
  13. Barker K.R., Kus J.V., Normand A.C., Gharabaghi F., McTaggart L., Rotstein C., et al. A practical workflow for the identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: database, medium, and incubation optimization. J. Clin. Microbiol. 2022; 60(12): e0103222. https://doi.org/10.1128/jcm.01032-22
  14. Nellessen C.M., Nehl D.B. An easy adjustment of instrument settings (‘Peak MALDI’) improves identification of organisms by MALDI-TOF mass spectrometry. Sci. Rep. 2023; 13(1): 15018. https://doi.org/10.1038/s41598-023-42328-2
  15. Fissel J.A., Holdren-Serrell C.K., Memon W., Zhang S.X. Performance of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry testing algorithm for the rapid identification of clinical filamentous molds. Front. Cell. Infect. Microbiol. 2022; 12: 915049. https://doi.org/10.3389/fcimb.2022.915049
  16. Gómez-Velásquez J.C., Loaiza-Díaz N., Norela Hernández G., Lima N., Mesa-Arango A.C. Development and validation of an in-house library for filamentous fungi identification by MALDI-TOF MS in a clinical laboratory in Medellin (Colombia). Microorganisms. 2020; 8(9): 1362. https://doi.org/10.3390/microorganisms8091362
  17. Stein M., Tran V., Nichol K.A., Lagacé-Wiens P., Pieroni P., Adam H.J., et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses. 2018; 61(10): 743–53. https://doi.org/10.1111/myc.12800
  18. Zvezdanova M.E., Escribano P., Ruiz A., Martínez-Jiménez M.C., Peláez T., Collazos A., et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019; 57(1): 63–70. https://doi.org/10.1093/mmy/myx154
  19. Normand A.C., Becker P., Gabriel F., Cassagne C., Accoceberry I., Gari-Toussaint M., et al. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017; 55(9): 2661–70. https://doi.org/10.1128/JCM.00263-17
  20. Heireman L., Patteet S., Steyaert S. Performance of the new ID-fungi plate using two types of reference libraries (Bruker and MSI) to identify fungi with the Bruker MALDI Biotyper. Med. Mycol. 2020; 58(7): 946–57. https://doi.org/10.1093/mmy/myz138
  21. Jeraldine V.M., Wim L., Ellen V.E. A comparative study for optimization of MALDI-TOF MS identification of filamentous fungi. Eur. J. Clin. Microbiol. Infect. Dis. 2023; 42(10): 1153–61. https://doi.org/10.1007/s10096-023-04652-3
  22. Robert M.G., Romero C., Dard C., Garnaud C., Cognet O., Girard T., et al. Evaluation of ID fungi plates medium for identification of molds by MALDI Biotyper. J. Clin. Microbiol. 2020; 58(5): e01687-19. https://doi.org/10.1128/JCM.01687-19
  23. Becker P.T., de Bel A., Martiny D., Ranque S., Piarroux R., Cassagne C., et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med. Mycol. 2014; 52(8): 826–34. https://doi.org/10.1093/mmy/myu064
  24. Riat A., Hinrikson H., Barras V., Fernandez J., Schrenzel J. Confident identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without subculture-based sample preparation. Int. J. Infect. Dis. 2015; 35: 43–5. https://doi.org/10.1016/j.ijid.2015.04.013
  25. Wilkendorf L.S., Bowles E., Buil J.B., van der Lee H.A.L., Posteraro B., Sanguinetti M., et al. Update on matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi. J. Clin. Microbiol. 2020; 58(12): e01263-20. https://doi.org/10.1128/JCM.01263-20
  26. Schulthess B., Ledermann R., Mouttet F., Zbinden A., Bloemberg G.V., Böttger E.C., et al. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014; 52(8): 2797–803. https://doi.org/10.1128/JCM.00049-14
  27. Vidal-Acuña M.R., Ruiz-Pérez de Pipaón M., Torres-Sánchez M.J., Aznar J. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med. Mycol. 2018; 56(7): 838–46. https://doi.org/10.1093/mmy/myx115
  28. Paul S., Singh P., Rudramurthy S.M., Chakrabarti A., Ghosh A.K. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds. Future Microbiol. 2017; 12: 1457–66. https://doi.org/10.2217/fmb-2017-0105
  29. Li Y., Wang H., Hou X., Huang J.J., Wang P.C., Xu Y.C. Identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry and antifungal susceptibility testing of non-aspergillus molds. Front. Microbiol. 2020; 11: 922. https://doi.org/10.3389/fmicb.2020.00922
  30. Park J.H., Shin J.H., Choi M.J., Choi J.U., Park Y.J., Jang S.J., et al. Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn. Microbiol. Infect. Dis. 2017; 87(1): 28–31. https://doi.org/10.1016/j.diagmicrobio.2016.10.012
  31. Peng Y., Zhang Q., Xu C., Shi W. MALDI-TOF MS for the rapid identification and drug susceptibility testing of filamentous fungi. Exp. Ther. Med. 2019; 18(6): 4865–73. https://doi.org/10.3892/etm.2019.8118
  32. Lecerf P., De Paepe R., Jazaeri Y., Normand A.C., Martiny D., Packeu A. Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections. J. Fungi (Basel). 2022; 8(12): 1248. https://doi.org/10.3390/jof8121248
  33. Рябинин И.А., Васильева Н.В., Борзова Ю.В. Характеристика сериновой протеазы Sуnсерhаlаstrum rасеmоsum Cohn, 1886. Проблемы медицинской микологии. 2020; 22(2): 50–5. https://doi.org/10.24412/1999-6780-2020-2-50-55 https://elibrary.ru/ojvpis
  34. Cassagne C., Normand A.C., L’Ollivier C., Ranque S., Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016; 59(11): 678–90. https://doi.org/10.1111/myc.12506
  35. Calderaro A., Motta F., Montecchini S., Gorrini C., Piccolo G., Piergianni M., et al. Identification of Dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int. J. Mol. Sci. 2014; 15(9): 16012–24. https://doi.org/10.3390/ijms150916012
  36. Wilson D.A., Young S., Timm K., Novak-Weekley S., Marlowe E.M., Madisen N., et al. Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinically important bacteria and yeasts. Am. J. Clin. Pathol. 2017; 147(6): 623–31. https://doi.org/10.1093/ajcp/aqw225
  37. Lopes R.B., Faria M., Souza D.A., Bloch C. Jr., Silva L.P., Humber R.A. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex. Mycologia. 2014; 106(4): 865–78. https://doi.org/10.3852/13-401
  38. Ning Y.T., Yang W.H., Zhang W., Xiao M., Wang Y., Zhang J.J., et al. Developing two rapid protein extraction methods using focused-ultrasonication and zirconia-silica beads for filamentous fungi identification by MALDI-TOF MS. Front. Cell. Infect. Microbiol. 2021; 11: 687240. https://doi.org/10.3389/fcimb.2021.687240
  39. Rychert J., Slechta E.S., Barker A.P., Miranda E., Babady N.E., Tang Y.W., et al. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J. Clin. Microbiol. 2018; 56(2): e01353–17. https://doi.org/10.1128/JCM.01353-17
  40. Huang Y., Zhang M., Zhu M., Wang M., Sun Y., Gu H., et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi. World J. Microbiol. Biotechnol. 2017; 33(7): 142. https://doi.org/10.1007/s11274-017-2297-3
  41. McMullen A.R., Wallace M.A., Pincus D.H., Wilkey K., Burnham C.A. Evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. J. Clin. Microbiol. 2016; 54(8): 2068–73. https://doi.org/10.1128/JCM.00825-16
  42. Pinheiro D., Monteiro C., Faria M.A., Pinto E. Vitek® MS v3.0 system in the identification of filamentous fungi. Mycopathologia. 2019; 184(5): 645–51. https://doi.org/10.1007/s11046-019-00377-0
  43. Bille E., Dauphin B., Leto J., Bougnoux M.E., Beretti J.L., Lotz A., et al. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin. Microbiol. Infect. 2012; 18(11): 1117–25. https://doi.org/10.1111/j.1469-0691.2011.03688.x
  44. Singh A., Singh P.K., Kumar A., Chander J., Khanna G., Roy P., et al. Molecular and matrix-assisted laser desorption ionization-time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India. J. Clin. Microbiol. 2017; 55(4): 1090–103. https://doi.org/10.1128/JCM.02413-16
  45. Paul S., Singh P., Sharma S., Prasad G.S., Rudramurthy S.M., Chakrabarti A., et al. MALDI-TOF MS-based identification of melanized fungi is faster and reliable after the expansion of in-house database. Proteomics. Clin. Appl. 2019; 13(3): e1800070. https://doi.org/10.1002/prca.201800070
  46. Lévesque S., Dufresne P.J., Soualhine H., Domingo M.C., Bekal S., Lefebvre B., et al. A side by side comparison of Bruker Biotyper and Vitek MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015; 10(12): e0144878. https://doi.org/10.1371/journal.pone.0144878
  47. Hankins J.D., Amerson-Brown M.H., Brown C.A., Riegler A.N., Muldrew K.L., Dunn J.J. Comparison of Bruker Biotyper® and Vitek® MS matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry platforms for the identification of filamentous fungi. Future Microbiol. 2023; 18: 553–61. https://doi.org/10.2217/fmb-2023-0084
  48. Lau A.F., Walchak R.C., Miller H.B., Slechta E.S., Kamboj K., Riebe K., et al. Multicenter study demonstrates standardization requirements for mold identification by MALDI-TOF MS. Front. Microbiol. 2019; 10: 2098. https://doi.org/10.3389/fmicb.2019.02098
  49. Quéro L., Girard V., Pawtowski A., Tréguer S., Weill A., Arend S., et al. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiol. 2019; 81: 76–88. https://doi.org/10.1016/j.fm.2018.05.001
  50. Américo M.F., Machado Siqueira P.L., Del Negro B.G.M., Favero Gimenes M.V., Trindade S.M.R., Motta L.A., et al. Evaluating VITEK MS for the identification of clinically relevant Aspergillus species. Med. Mycol. 2020; 58(3): 322–7. https://doi.org/10.1093/mmy/myz066
  51. De Respinis S., Monnin V., Girard V., Welker M., Arsac M., Cellière B., et al. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J. Clin. Microbiol. 2014; 52(12): 4286–92. https://doi.org/10.1128/JCM.02199-14
  52. Karabıçak N., Karatuna O., İlkit M., Akyar I. Evaluation of the Bruker matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia. 2015; 180(3–4): 165–71. https://doi.org/10.1007/s11046-015-9898-x
  53. da Cunha K.C., Riat A., Normand A.C., Bosshard P.P., de Almeida M.T.G., Piarroux R., et al. Fast identification of dermatophytes by MALDI-TOF/MS using direct transfer of fungal cells on ground steel target plates. Mycoses. 2018; 61(9): 691–7. https://doi.org/10.1111/myc.12793
  54. Triest D., Stubbe D., De Cremer K., Piérard D., Normand A.C., Piarroux R., et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus. J. Clin. Microbiol. 2015; 53(2): 465–76. https://doi.org/10.1128/JCM.02213-14
  55. Dolatabadi S., Kolecka A., Versteeg M., de Hoog S.G., Boekhout T. Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). J. Med. Microbiol. 2015; 64(7): 694–701. https://doi.org/10.1099/jmm.0.000091
  56. Packeu A., De Bel A., l’Ollivier C., Ranque S., Detandt M., Hendrickx M. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: validation in the clinical laboratory. J. Clin. Microbiol. 2014; 52(9): 3440–3. https://doi.org/10.1128/JCM.01428-14
  57. Shao J., Wan Z., Li R., Yu J. Species identification and delineation of pathogenic mucorales by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2018; 56(4): e01886-17. https://doi.org/10.1128/JCM.01886-17
  58. Sleiman S., Halliday C.L., Chapman B., Brown M., Nitschke J., Lau A.F., et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting. J. Clin. Microbiol. 2016; 54(8): 2182–6. https://doi.org/10.1128/JCM.00906-16

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.