Changes in the Composition of Heavy Oil and the Structure of Asphaltenes upon Treatment with Isopropyl Alcohol

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interactions of the components of heavy oil from the Zyuzeevskoye field (Republic of Tatarstan) and isopropyl alcohol (IPA) at temperatures of 25, 65, and 100°C were studied. It was established that the temperature regime affected the density, composition, and structural group characteristics of the products of interactions between the oil and IPA. The density of the resulting products increased by 4 wt % (from 0.885 to 0.924 g/cm3) as the process temperature was increased to 100°C, and the concentration of resin–asphaltene substances also increased by 4 wt % in this case. It was shown using IR spectroscopy that the tentative concentration of paraffin fragments in the structure of asphaltenes increased significantly when the oil was treated with isopropanol at temperatures of 65–100°C, and the branching factor increased by a factor of 3, as compared to that of the initial asphaltenes. The observed changes were due to the incorporation of isopropyl fragments into the structure of asphaltene molecules upon the processing of heavy oil with IPA.

Sobre autores

D. Korneev

Yugra State University

Email: korneevds90@mail.ru
Khanty-Mansiysk, 628012 Russia

E. Osnitskii

Yugra State University

Email: evg.osn@gmail.com
Khanty-Mansiysk, 628012 Russia

N. Voronetskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: voronetskaya@ipc.tsc.ru
Tomsk, 634055 Russia

G. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia

L. Klimenko

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: l_klimenko@ugrasu.ru
Tomsk, 634055 Russia

Bibliografia

  1. Shuler B., Meyer G., Pena D., Mullins O. C., Gross L. // J. Amer. Chem. Soc. 2015. V. 137. No. 31. P. 9870. https://doi.org/10.1021/jacs.5b04056
  2. Ганеева Ю.М., Юсупова Т.Н., Романов Г.В. // Успехи химии. 2011. Т. 80. № 10. С. 1034. [Russ. Chem. Rev, 2011, vol. 80, no. 10, p. 993. https://doi.org/10.1070/RC2011v080nl0ABEH004174].
  3. Rogel E., Ovalles C., Moir M. // Energy Fuels. 2010. Vol. 24. No. 8. P. 4369. https://doi.org/10.1021/ef100478y
  4. Gray M.R., Tykwinski R.R., Stryker J.M., Tan X. // Energy Fuels. 2011. Vol. 25. No. 7. P. 3125. https://doi.org/10.1021/ef200654p
  5. Lin Y.-J., He P., Tavakkoli M., Mathew N.T., Fatt Y.Y., Chail J.C., Goharzadeh A., Vargas F.M., Biswal S.L. // Energy Fuels. 2017. Vol. 31. No. 11. P. 11660. https://doi.org/10.1021/acs.energyfuels.7b01827
  6. Rogel E. // Energy Fuels. 2011. Vol. 25. No. 2. P. 472. https://doi.org/10.1021/ef100912b
  7. Ovalles C., Rogel E., Morazan H., Moir M.E. // Fuel. 2016. Vol. 180. P. 20. https://doi.org/10.1016/j.fuel.2016.03.084
  8. Cagniant D., Nosyrev I., Cebolla V., Vela J., Membrado L., Gruber R. // Fuel. 2001. Vol. 80. P. 107. https://doi.org/10.1016/S0016-2361(00)00041-7
  9. Prado G H.C., de Klerk A. // Energy Fuels. 2015. Vol. 29. No. 8. P. 4947. https://doi.org/10.1021/acs.energyfuels.5b01292
  10. Корнеев Д.С., Певнева Г.С., Воронецкая Н.Г. // Нефтехимия. 2021. Т. 61. № 2. С. 172. [Petroleum Chemistry, 2021, vol. 61, no. 2, p. 152. https://doi.org/10.1134/S0965544121020158].https://doi.org/10.31857/S0028242121020052

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (332KB)

Declaração de direitos autorais © Д.С. Корнеев, Е.М. Осницкий, Н.Г. Воронецкая, Г.С. Певнева, Л.С. Клименко, 2023