Resins transformation in the cracking of high sulfur vaccum residue

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the study of resins isolated from liquid cracking products of sulfuric vacuum residue from Omsk refinery are presented. Thermal treatment was carried out at 500 °C and duration of 15, 30, 45 and 60 minutes. It was found that with increasing duration of vacuum residue cracking there is an increase in coke yield due to condensation of resins into asphaltenes and further into coke. Using the data of 1H-NMR spectroscopy, elemental composition and results of molecular weight measurement the changes of structural-group parameters of resins in the process of cracking were established. The averaged resin molecules become more condensed, characterized by an increased content of aromatic fragments, a decrease in the number of naphthenic fragments and the number of aliphatic substituents. The totality of data on changes in the composition of cracking products, together with the analysis of sulfur distribution in the composition of products, indicates a significant contribution of sulfur-containing structural fragments of resins to the accumulation of thiophene derivatives. It is shown that cracking of resins is accompanied by formation of a wide range of low-molecular-weight sulfur-containing compounds that are incorporated into oils.

全文:

受限制的访问

作者简介

A. Goncharov

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mad111-2011@mail.ru
俄罗斯联邦, Tomsk

E. Krivtsov

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

Email: john@ipc.tsc.ru
俄罗斯联邦, Tomsk

参考

  1. Sawarkar A.N. // Petroleum Science and Technology. 2019. V. 37. №. 9. P. 1090. https://doi.org/10.1080/10916466.2019.1575875.
  2. Prajapati R., Kohli K., Maity S.K., Garg M.O. // Fuel. 2017. V. 203. P. 514. https://doi.org/10.1016/j.fuel.2017.04.126.
  3. Felix G., Tirado A., Varfolomeev M.A., Al-muntaser A., Suwaid M., Yuan Ch., Ancheyata J. // Geoenergy Science and Engineering. 2023. V. 230. P.212242. https://doi.org/10.1016/j.geoen.2023.212242.
  4. Певнева Г.С., Воронецкая Н.Г., Гончаров А.В., Корнеев Д.С. // ХТТ. 2024. № 2. С. 31. https://doi.org/10.31857/S0023117724020068.
  5. Kheirolahi S., BinDanbag M., Bagherzadeh H., Abbasi Z. // Fuel. 2024. V. 371. P. 131884. https://doi.org/10.1016/j.fuel.2024.131884.
  6. Pagan Pagan N.M., Zhang Z., Nguyen T.V., Marciel A.B., Biswal S.B. // Chemical Reviews. 2022. V. 122. P.7205. https://doi.org/10.1021/acs.chemrev.1c00897.
  7. Fakher S., Ahdaya M., Elturki., Imqam A. // Journal of Petroleum Exploration and Production Technology. 2020. V. 10. P. 1183.
  8. Головко А.К., Гринько А.А. // Нефтехимия. 2018. Т. 58. № 4. С. 391. https://doi.org/10.1134/S002824211804008X. [Petroleum Chemistry, 2019, vol. 58, no. 8, p. 599. https://doi.org/10.1134/S0965544118080078].
  9. Primerano K., Mirwald J., Hofko B. // Fuel. 2024. V. 368. P. 131616. https://doi.org/10.1016/j.fuel.2024.131616.
  10. Goncharov A.V., Krivtsov E.B., Sviridenko N.N., Golovko A.K. // IOP Conf. Ser.: Mater. Sci. 2019. P. 012022. https://doi.org/10.1088/1757-899X/597/1/012022.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Hypothetical scheme for the conversion of tar resins from the Omsk Oil Refinery.

下载 (324KB)

版权所有 © Russian Academy of Sciences, 2025