Effect of gamma irradiation dose on papain toxicity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Study of the effect of a wide range of γ-irradiation doses from 250 to 3000 kGy on acute toxicity of papain when administered to laboratory animals. It was found for the first time that preliminary γ-irradiation of papain up to 1000 kGy reduces toxicity of its aqueous dispersions at intraperitoneal administration by more than five times. Further increase of irradiation dose up to 3000 kGy does not lead to a noticeable change in the toxic effect. The results of the study indicate that γ-irradiation of papain can be used to reduce its toxicity.

About the authors

U. Yu. Allayarova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

S. V. Demidov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

S. V. Blokhina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

T. A. Rayevskaya

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

D. V. Mishchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

Yu. A. Omelchuk

Sevastopol National University

Email: sadush@icp.ac.ru

Sevastopol Institute for Nuclear Energy and Industry

Russian Federation, Sevastopol

S. R. Allayarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Kamphuis I.G., Kalk K.H., Swarte M.B., Drenth J. // J.Mol. Biol. 1984. V. 179. P. 233.
  2. Wong D.W.S. Food enzymes: structure and mechanism. NY: Springer Science + Business Media, 1995. P. 139.
  3. Shouket H.A., Ameen I.A., Tursunov O., Kholikova Kh., Pirimov O., Kurbonov N. et al. // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 614. Article 012171.
  4. Mahajan R.T., Chaudhari G. // Int.J. Adv. Res. 2014. V. 2. P. 1173.
  5. Abu-Alruz K., Mazahreh A.S., Quasem J.M., Hejazin R.K., El-Qudah J.M. // Am.J. Agricult. Biol. Sci. 2009. V. 4. P. 173.
  6. Polaina J., MacCabe A.P. Industrial enzymes: structure, function, and applications. Dordrecht: Springer, 2007. 641 P.
  7. Pietrasik Z., Shand P.J. // Meat Sci. 2011. V. 88. P. 8.
  8. Bekhit A.A., Hopkins D.L., Geesink G., Franks P. // Crit.Rev. Food Sci. Nutr. 2014. V. 54. P. 1012.
  9. Beeley J.A., Yip H.K., Stevenson A.G. // Brit. Dental J.: BDJ online. 2000. V. 188. P. 427.
  10. Mohr H., Desser L. // BMC Compl. Altern. Med. 2013. V. 13. P. 231.
  11. Akila M., Sushama A., Ramanathan K. // Int.J. Pharm. Pharm. Sci. 2014. V. 6. P. 160.
  12. Fauziya S., Krishnamurthy R. // CIB Tech J. Pharm. Sci. 2013. V. 2. P. 25.
  13. Nguyen T.T., Shaw P.N., Parat M.O., Hewavitharana A.K. // J.Mol. Nutr. Food. Res. 2013. V. 57. P. 153.
  14. Manal E.E. // EC Clin.Exp. Anatomy. 2018. V. 1. P. 40.
  15. Mironov А.N., Sakaeva I.V., Sakanyan E.I., Bunyatyan N.D., Kovaleva E.L., Mitkina L.I. et al. // Vedomosti Scientific Centre of expertise of means of medical use. 2012. № 3. P. 56.
  16. Allayarov S.R., Rudneva T.N., Demidov S.V., Allayarova U.Yu., Chekalina S.D. // High Energy Chemistry. 2024. V. 58. № 5 (in publication).
  17. Mekapogu A.R. // J. Inst. Actuar. 1952. V. 78. P. 388.
  18. Berezovskaya I.V. // Chem.–Pharm. J. 2003. V. 37. P. 32.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences