Synthesis of nano-sized solid electrolyte Pr1–ySryF3–y and the effect of heat treatment on the ionic conductivity of fluoride nanoceramics

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid electrolyte nanoceramics Pr1–ySryF3–y (y = 0.03, sp. gr. P3c1) were obtained by high-energy grinding of melt-grown crystals followed by cold pressing. The phase composition, microstructure, morphology, and electrical properties of nanoceramics were studied using X-ray diffraction analysis, electron microscopy and impedance spectroscopy. The room temperature conductivity of the synthesized Pr0.97Sr0.03F2.97 nanoceramics (σcer = 1.7 × 10–7 S/cm) is significantly lower than the conductivity of the original single crystal (σcrys = 4.0 × 10–4 S/cm), which is due to its low (about ~74% of the theoretical value) density. Heat treatment of nanoceramics at 823 K in vacuum leads to a 3-fold increase in the value of σcer, and annealing at 1273 K in a fluorinating atmosphere results in further increase in conductivity (σcer = 4.3 × 10–5 S/cm) due to the process of collective recrystallization and significant increase the density of ceramics up to 90%. The mechanical grinding technique and subsequent heat treatment of Pr1–ySryF3–y nanopowder makes it possible to processing single-phase highly conductive ceramics. The proposed method for the synthesis of ceramic fluoride nanomaterials as a technological form of solid electrolytes is a promising direction for further developments in the field of creating fluorine-ion current sources and fluorine gas sensors.

Full Text

Restricted Access

About the authors

N. I. Sorokin

NRC “Kurchatov Institute”

Author for correspondence.
Email: nsorokin1@yandex.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

N. A. Arkharova

NRC “Kurchatov Institute”

Email: nsorokin1@yandex.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

D. N. Karimov

NRC “Kurchatov Institute”

Email: dnkarimov@gmail.com

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Russian Federation, Moscow

References

  1. Sobolev B.P., Sorokin N.I., Bolotina N.B. Photonic & Electronic Properties of Fluoride Materials. V. 1 // Progress in Fluorine Science / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465. https://doi.org/10.1016/B978-0-12-801639-8.00021-0
  2. Karkera G., Anji Reddy M., Fichtner M. // J. Power Sources. 2021. V. 481. P. 228877. https://doi.org/10.1016/j.jpowsour.2020.228877
  3. Yiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  4. Scholz G. // ChemText. 2021. V. 7. P. 16. https://doi.org/10.1007/s40820-021-00133-2
  5. Patro L.N. // J. Solid State Electrochem. 2020. V. 24. P. 2219. https://doi.org/10.1007/s10008-020-04769-x
  6. Потанин А.А. // Журн. Рос. хим. о-ва им. Д.И. Менделеева. 2001. Т. 45. № 5–6. С. 58.
  7. Anji Reddy М., Fichtner М. // J. Mater. Chem. 2011. V. 21. P. 17059. https://doi.org/10.1039/c1jm13535j
  8. Сорокин Н.И., Каримов Д.Н., Бучинская И.И. // Электрохимия. 2021. Т. 57. № 8. С. 465. https://doi.org/10.31857/S0424857021070136
  9. Buchinskaya I.I., Karimov D.N., Sorokin N.I. // Crystals. 2021. V. 11. № 6. P. 629. https://doi.org/10.3390/cryst11060629
  10. Fujara F., Kruk D., Lips O. et al. // Solid State Ionics. 2008. V. 179. P. 2350. https://doi.org/1 10.1016/j.ssi.2008.10.003
  11. Denecke M.A., Gunsser W., Privalov A.V., Murin I.V. // Solid State Ionics. 1992. V. 52. P. 327. https://doi.org/10.1016/0167-2738(92)90179-S
  12. Изосимова М.Г., Лившиц А.И., Бузник В.М. и др. // ФТТ. 1986. Т. 28. № 9. С. 2644.
  13. Takahashi T., Iwahara H., Ishikava T. // J. Electrochem. Soc. 1977. V. 124. № 2. P. 280. https://doi.org/10.1149/1.2133280
  14. Мурин И.В., Глумов О.В., Амелин Ю.В. // Журн. прикл. химии. 1980. Т. 53. № 7. С. 1474.
  15. Schoonman J., Oversluzen G., Wapenaar K.E.D. // Solid State Ionics. 1980. V. 1. P. 211. https://doi.org/10.1016/0167-2738(80)90005-3
  16. Сорокин Н.И., Смирнов А.Н., Федоров П.П., Соболев Б.П. // Электрохимия. 2009. Т. 45. № 5. С. 641.
  17. Соболев Б.П., Свиридов И.А., Фадеева В.И. и др. // Кристаллография. 2008. Т. 53. № 5. С. 919.
  18. Сорокин Н.И., Ивановская Н.А., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 2. С. 286. https://doi.org/10.7868/S002347611402026X
  19. Duvel A., Bednarcik J., Sepelak V., Heitjans P. // J. Phys. Chem. C. 2014. V. 118. P. 7117. https://doi.org/10.1021/jp410018t
  20. Chable J., Martin A.G., Bourdin A. et al. // J. Alloys Compd. 2017. V. 692. P. 980. https://doi.org/10.1016/j.jallcom.2016.09.135
  21. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во СПбГУ, 2000. 616 с.
  22. Stevenson A.J., Serier-Brault H., Gredin P., Mortier M. // J. Fluor. Chem. 2011. V. 132. P. 1165. https://doi.org/1016/j.jfluchem.2011.07.017
  23. Басиев Т.Т., Дорошенко М.Е., Конюшкин В.А. и др. // Изв. РАН. Сер. хим. 2008. № 5. С. 863.
  24. Дукельский К.В., Миронов И.А., Демиденко В.А. и др. // Опт. журн. 2008. Т. 75. № 11. С. 50.
  25. Соболев Б.П., Свиридов И.А., Фадеева В.И. и др. // Кристаллография. 2005. Т. 50. № 3. С. 524.
  26. Кузнецов С.В., Осико В.В., Ткаченко Е.А., Федоров П.П. // Успехи химии. 2006. Т. 75. № 12. С. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
  27. Соболев Б.П., Сорокин Н.И., Кривандина Е.А., Жмурова З.И. // Кристаллография. 2014. Т. 59. № 4. С. 609. https://doi.org/10.7868/S0023476114040195
  28. Сорокин Н.И., Соболев Б.П., Кривандина Е.А., Жмурова З.И. // Кристаллография. 2015. Т. 60. № 1. С. 123. https://doi.org/10.7868/S0023476115010233
  29. Sobolev B.P., Seiranian K.B. // J. Solid State Chem. 1981. V. 39. № 3. P. 337. https://doi.org/10.1016/0022-4596(81)90268-1
  30. Кривандина Е.А., Жмурова З.И., Соболев Б.П. и др. // Кристаллография. 2006. Т. 51. № 5. С. 954.
  31. Ананьева Г.В., Баранова Е.Н., Заржицкая М.Н. и др. // Неорган. материалы. 1980. Т. 16. № 1. С. 68.
  32. Сорокин Н.И., Жмурова З.И., Кривандина Е.А., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 1. С. 98. https://doi.org/10.7868/S0023476113050147
  33. Сорокин Н.И., Соболев Б.П. // ФТТ. 2008. Т. 50. № 3. С. 402.
  34. Сорокин Н.И., Соболев Б.П. // Электрохимия. 2007. Т. 43. № 4. С. 420.
  35. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // Кристаллография. 1996. Т. 41. № 2. С. 310.
  36. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. Cryst. Mat. 2014. B. 229. S. 345.
  37. Соболев Б.П., Александров В.Б., Федоров П.П. и др. // Кристаллография. 1976. Т. 21. Вып. 1. С. 96.
  38. Сорокин Н.И., Ивановская Н.А., Бучинская И.И. // ФТТ. 2023. Т. 65. № 1. С. 106. https://doi.org/10.21883/FTT.2023.01.53931.498
  39. Кривандина Е.А., Жмурова З.И., Глушкова Т.М. и др. // Кристаллография. 2003. Т. 48. № 5. С. 940.
  40. Сорокин Н.И., Каримов Д.Н., Ивановская Н.А. // Кристаллография. 2021. Т. 66. № 6. С. 980. https://doi.org/10.31857/S0023476121060394
  41. Barsoukov E., Macdonald J.R. Impedance spectroscopy: theory, experiment and applications. New York.: Wiley, 2005. 606 p.
  42. Breuer S., Gombotz M., Pregartner V. et al. // Energy Storage Mater. 2019. V. 16. P. 481. https://doi.org/10.1016/j.ensm.2018.10.010
  43. Chable J., Dieudonne B., Body M. et al. // Dalton Trans. 2015. V. 44. P. 19625. https://doi.org/10.1039/c5dt02321a
  44. Bratia H., Thie D.T., Pohl H.P. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 23707. https://doi.org/10.1021/acsami.7b04936
  45. Кузнецов С.В., Яроцкая И.В., Федоров П.П. и др. // Журн. неорган. химии. 2007. Т. 52. № 3. С. 364.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Section of the diagram of the SrF2–PrF3 system [29] (a). Transmission spectrum of Pr1–ySryF3–y crystals (y = 0.05 according to the batch composition), sample thickness 2 mm (b). The positions of the bands associated with the presence of Nd3+ ions are marked with the sign *. The inset shows the appearance of Pr0.97Sr0.03F2.97 crystal blocks obtained from the melt.

Download (237KB)
3. Fig. 2. Diffraction patterns of the Pr1–ySryF3–y solid solution: 1 – directional crystallization of the melt, 2 – MD method, duration τ = 1 h, 3 – MD method, τ = 4 h, 4 – MD method, τ = 4 h and annealing at T = 1273 K, τ = 2 h. Shown are the calculated positions of the Bragg reflections for space group P3c1 with parameters a = 7.0802(1) and c = 7.2457(3) Å.

Download (105KB)
4. Fig. 3. SEM images of Pr0.97Sr0.03F2.97 particles after MD for τ = 1 (a) and 4 h (b).

Download (395KB)
5. Fig. 4. External appearance of a polycrystalline sample (a) and SEM image of the surface areas of ceramics obtained from Pr0.97Sr0.03F2.97 particles after τ = 1 (b) and = 4 h (c) of milling.

Download (447KB)
6. Fig. 5. Impedance hodographs Z*(ω) for the initial (a) and annealed at 1273 K for 2 h (b) Pr0.97Sr0.03F2.97 ceramics with Ag electrodes at a temperature of 297 ± 1 K. The inset to Fig. 5a shows the equivalent electrical circuit, the numbers near the curves indicate the frequency in kHz. Resistance values: a – Rcer = 1.6 × 107 Ohm (extrapolation), b – Rcer = 7.5 × 104 Ohm, Rig = 8 × 103 Ohm.

Download (98KB)
7. Fig. 6. SEM images of the surface of Pr0.97Sr0.03F2.97 ceramics obtained from particles by the MD method for τ = 1 (a), τ = 4 h (b) and annealed at 1273 K for 2 h, and the corresponding histograms of the distribution of crystalline grains by size.

Download (440KB)

Copyright (c) 2024 Russian Academy of Sciences