Methanosarcina baikalica sp. nov., a new methanogenic archaea isolated from surface bottom sediments of Lake Baikal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new methane-forming archaeon strain Z-7115T was isolated from the bottom sediments of the freshwater Lake Baikal (Eastern Siberia, Russia). Morphologically, the strain is represented by non-motile coccoid cells 0.5–3 µm in size, collected in packets of 2–4 and their small aggregates. The strain uses methanol, mono-, di-, trimethylamine and acetate as energy substrates for methanogenesis. The cells grow at a temperature of 15–35°C (optimum 25°C), pH 6.3–7.5 (optimum pH 7.3) and are tolerant to NaCl concentrations < 0.1 M. The G + C content of genomic DNA is 40.76 mol. %. According to the 16S rRNA gene analysis, the new isolate belongs to the genus Methanosarcina, having a similarity level of 98.51% with the closest species of this genus M. siciliae T4/MT . The average nucleotide similarity (ANI) between the genomes of strains Z-7115T and M. siciliae T4/MT was 83.8%. The virtual assessment of the hybridization of the genomes of these two strains was 23.3%. Based on the data of phylogenetic analysis and morpho-physiological properties, it is proposed to classify the isolated strain Z-7115T (=JCM 39438, =VKM B-3565) as a new species Methanosarcina baikalica sp. nov.

Full Text

Restricted Access

About the authors

T. N. Zhilina

Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: Zhilinat@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

A. Yu. Merkel

Research Center of Biotechnology of the Russian Academy of Sciences

Email: Zhilinat@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

T. V. Kolganova

Research Center of Biotechnology of the Russian Academy of Sciences

Email: lichoradkin43@gmail.com

Skryabin Institute of Bioengineering

Russian Federation, Moscow, 119071

V. E. Trubitsyn

Pushchino Research Center for Biological Research of the Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russian Federation, Pushchino, 142290

V. A. Shcherbakova

Pushchino Research Center for Biological Research of the Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russian Federation, Pushchino, 142290

N. E. Suzina

Pushchino Research Center for Biological Research of the Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russian Federation, Pushchino, 142290

N. V. Pimenov

Research Center of Biotechnology of the Russian Academy of Sciences

Email: Zhilinat@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

References

  1. Букин С. В., Павлова О. Н., Калмычков Г. В., Иванов В. Г., Погодаева Т. В., Галачьянц Ю. П., Букин Ю. С., Хабуев А. В., Земская Т. И. Субстратная специфичность метаногенных сообществ из донных отложений оз. Байкал, ассоциированных с разгрузками углеводородных газов // Микробиология. 2018. Т. 87. С. 409–420.
  2. Bukin S . V., Pavlova O. N., Kalmychkov G. V., Ivanov V. G., Pogodaeva T. V., Galachyants Yu.P., Bukin Yu.S., Khabuyev A. V., Zemskaya T. I. Substrate specificity of methanogenic communities from Lake Baikal bottom sediments associated with hydrocarbon gas discharge // Microbiology (Moscow). 2018. V. 87. P. 549–558. https://doi.org/10.1134/S0026261718040045
  3. Дагурова О. П., Намсараев Б. Б., Козырева Л. П., Земская Т. И., Дулов Л. Е. Бактериальные процессы цикла метана в донных осадках озера Байкал // Микробиология. 2004. Т. 74. С. 248–257.
  4. Dagurova O. P., Namsaraev B. B., Kozyreva L. P., Zemskaya T. I., Dulov L. E. Bacterial processes of the methane cycle in bottom sediments of Lake Baikal // Microbiology (Moscow). 2004. V. 73. P . 202–210. https://doi.org/10.1023/B:MICI.0000023990.71983.c1
  5. Жилина Т. Н. Тонкое строение метаносарцины // Микробиология. 1971. Т. 50. С. 674–679.
  6. Жилина Т. Н. Биотипы метаносарцины // Микробиология. 1976. Т. 55. С. 481–489.
  7. Жилина Т. Н., Груздев Д. С., Колганова Т. В., Пименов Н. В. Метаногены и ацетогены в анаэробных илах над газогидратами и в зонах нефтепроявления озера Байкал // Материалы 1-го Российского микробиологического конгресса / Под ред. Решетиловой Т. А. М.: ООО “ИД “Вода: химия и экология”, 2017. C. 44–45.
  8. Земская Т. И., Букин С. В., Ломакина А. В., Павлова О. Н. Микроорганизмы донных отложений Байкала – самого глубокого и древнего озера мира // Микробиология. 2021. Т. 90. С. 286–303.
  9. Zemskaya T. I., Bukin S. V., Lomakina A. V., Pavlova O. N. Microorganisms of bottom sediments of Lake Baikal – the deepest and oldest lake in the world // Microbiology (Moscow). 2021. V. 90. P. 298–313. https://doi.org/10.1134/S002626172103014
  10. Ломакина А. В., Погодаева Т. В., Морозов И. В., Земская Т. И. Микробные сообщества зоны разгрузки газонефтесодержащих флюидов ультрапресного озера Байкал // Микробиология. 2014. Т. 83. С. 355–365.
  11. Lomakina A. V., Pogodaeva T. V., Morozov I. V., Zemskaya T. I. Microbial communities of the discharge zone of oil- and gas-bearing fluids in low-mineral Lake Baikal // Microbiology (Moscow). 2014. Vol. 83, No. 3, pp. 355–365. https://doi.org/10.1134/S0026261714030126
  12. Намсараев Б. Б., Земская Т. И. Микробиологические процессы круговорота углерода в донных осадках озера Байкал // Новосибирск: Гео, 2000. 160 с.
  13. Павлова О. Н., Букин С. В., Ломакина А. В., Калмычков Г. В.,Иванов В.Г., Морозов И. В., Погодаева Т. В., Пименов Н. В., Земская Т. И. Образование углеводородных газов микробным сообществом донных осадков оз. Байкал // Микробиология. 2014. Т. 83. С. 694–702.
  14. Pavlova O. N., Bukin S. V., Lomakina A. V., Kalmychkov G. V.,Ivanov V .G., Morozov I. V., Pogodaeva T. V., Pimenov N. V., Zemskaya T. I. Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments // Microbiology (Moscow). 2015. V. 83. P. 694–702. https://doi.org/10.1134/S0026261714060137
  15. Пименов Н. В., Захарова Е. Е., Брюханов А. Л., Корнеева В. А., Кузнецов Б. Б., Турова Т. П., Погодаева Т. В., Калмычков Г. В., Земская Т. И. Активность и структура сообщества сульфатредуцирующих бактерий в осадках южной котловины оз. Байкал // Микробиология. 2014. Т. 83. С. 180–190.
  16. Pimenov N. V., Zakharova E. E., Bryukhanov A. L., Korneeva V. A., Kuznetsov B. B., Turova T. P., Pogodaeva T. V., Kalmychkov G. V., Zemskaya T. I. Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal // Microbiology (Moscow). 2014. V. 83. P. 47–55. https://doi.org/10.1134/S0026261714020167
  17. Черницына С. М., Мамаева Е. В. , Ломакина А. В., Погодаева Т. В., Галачьянц Ю. П., Букин С. В., Пименов Н. В., Хлыстов О. М., Земская Т. И. Филогенетическое разнообразие микробных сообществ в донных отложениях Посольской банки, оз. Байкал // Микробиология. 2016. Т. 85. С. 652–662.
  18. Chernitsyna S. M., Mamaeva E. V., Lomakina A. V., Pogodaeva T. V., Galachyants Yu.P., Bukin S. V., Pimenov N. V., Khlystov O. M., Zemskaya T. I. Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal // Microbiology (Moscow). 2016. V. 85. P. 672–680. https://doi.org/10.1134/S0026261716060060
  19. Шубенкова О. В., Земская Т. И., Черницына С. М., Хлыстов О. М., Трибой Т. И. Первые результаты исследования филогенетического разнообразия микроорганизмов осадков Южного Байкала в районе приповерхностного залегания гидратов метана // Микробиология. 2005. Т. 74. С. 370–377.
  20. Shubenkova O. V., Zemskaya T. I., Chernitsyna S. M., Khlystov O. M., Triboy T. I. The first results of an investigation into the phylogenetic diversity of microorganisms in Southern Baikal sediments in the region of subsurface discharge of methane hydrates // Microbiology (Moscow). 2005. V. 74. P. 314–320. https://doi.org/10.1007/s11021-005-0069-9
  21. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. GenBank // Nucl. Acids Res. 2017. V. 45. (D1). P. D37–D42. https://doi.org/10.1093/nar/gkw1070
  22. Bryant M. P., Boone D. R. Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri // Int. J. Syst. Bacteriol. 1987. V. 37. P. 169–170.
  23. Bukin S. V., Pavlova O. N., Kalmychkov G. V., Ivanov V. G., Zemskaya T. I. Methylotrophic methanogens in bottom sediments of lake Baikal // Limnol. Freshwater Biol. 2020. V. 4. C. 973–975.
  24. Chaumeil P. A., Mussig A. J., Hugenholtz P., Parks D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database // Bioinformatics (Oxford, England). 2022. V. 38. P. 5315–5316. https://doi.org/10.1093/bioinformatics/btac672
  25. Contreras-Moreira B., Vinuesa P . GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis // Appl. Environ. Microbiol. 2013. V. 79. P. 7696–7701. https://doi.org/10.1128/AEM.02411-13
  26. Ferry J. G. Methanosarcina acetivorans : a model for mechanistic understanding of aceticlastic and reverse methanogenesis // Front. Microbiol. 2020. V. 11. Art. 1806. https://doi.org/10.3389/fmicb.2020.01806
  27. Kadnikov V. V., Mardanov A., Beletsky A.V, Shubenkova O. V., Pogodaeva T. N., Zemskaya T. I., Ravin N. V., Skryabin K. G. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal // FEMS Microbiol. Ecol. 2012. V. 79. P. 348–358.
  28. Kulkarni G., Mand T. D., Metcalf W. W. Energy conservation via hydrogen cycling in the methanogenic archaeon Methanosarcina barkeri // Mbio. 2018. V. 9 (4). https://doi.org/10.1128/mbio.01256-18
  29. Lomakina A. V., Mamaeva E. V., Galachyants Y. P. et al. Diversity of Archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal // Geomicrobiol. J. 2018. V. 35. P. 50–63. https://doi.org/10.1080/01490451.2017.1315195
  30. Maestrojuan G. M., Boone D.R Characterization of Methanosarcina barkeri MS T and 227, Methanosarcina mazei S-6 T , and Methanosarcina vacuolata Z-761 T / / Int. J. Syst. Bacteriol . 1991. V. 41. P. 267–274.
  31. Meier-Kolthoff J.P., Sardà Carbasse J., Peinado-Olarte R.L., Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes // Nucleic Acid Res. 2022. V. 50. P. D801–D807.
  32. Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., von Haeseler A., Lanfear R. 2020. IQ-TREE2: New models and efficient methods for phylogenetic inference in the genomic era // Mol. Biol. Evol. V. 37. P. 1530–1534. https://doi.org/10.1093/molbev/msaa015
  33. Ni S., Boone D. R. Isolation and characterization of a dimethylsulfide-degrading methanogen, Methanolobus siciliae H1350, from an oil well, characterization of M. siciliae T4/MT, endemendation of M. siciliae / / Int. J. Syst. Bacteriol. 1991. V. 41. Art. 410416.
  34. Ni S., Woese C R., Aldrich H. C., Boone D. R. Transfer of Methanolobus siciliae to the genus Methanosarcina , naming it Methanosarcina siciliae , and emendation of the genus Methanosarcina // Int. J. Syst. Bacteriol. 1994. V. 44. P. 357–359. https://doi.org/10.1099/00207713-44-2-357
  35. Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes // Genome Res. 2015. V. 25. P. 1043–1055. https://doi.org/10.1101/gr.186072.114
  36. Shimizu S., Ueno A., Naganuma T, Kaneko K. Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation // Int. J. Syst. Evol. Microbiol. 2015. V. 65. P. 1167–1171.
  37. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J.B, Nozhevnikova A. N. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments // Syst. Appl. Microbiol. 2001. V. 24. P. 362–367.
  38. Sowers K. R., Baron S. F., Ferry J. G. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments // Appl. Environ. Microbiol. 1984. V. 47. P. 971–978.
  39. Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., Lomsadze A., Pruitt K. D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline // Nucleic Acids Res. 2016. V. 44. P. 6614–6624.
  40. Wick R. R., Judd L. M., Gorrie C. L., Holt K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads // PLoS Comput. Biol. 2017. V. 13. Art. e1005595. https://doi.org/10.1371/journal.pcbi.1005595
  41. Zhilina T. N., Zavarzin G. A. Methanosarcina vacuolata sp. nov., a vacuolated methanosarcina // Int. J. Syst. Bacteriol. 1987. V. 37 P. 281–283.
  42. Zhilina T. N., Zavarzin G. A. Extremely halophilic, methylotrophic, anaerobic bacteria // FEMS Microbiol. Lett. 1990. V. 87. P. 315–322.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of methanogenesis (blue columns) and acetogenesis (yellow columns) processes on different methanogenesis substrates in Lake Baikal samples above gas hydrates (GR-1, GR-2) and oil show zones (BC-6, GG-6).

Download (44KB)
3. Fig. 2. Morphology of cells of strain Z-7115T: a ‒ light microscope, phase contrast, scale mark ‒ 5 μm; b ‒ electron microscope, scale mark ‒ 1 μm.

Download (46KB)
4. Fig. 3. Phylogenetic tree based on 16S rRNA gene sequences (a) and 53 conserved single-copy marker genes (b) (Chaumeil et al., 2022). The tree was reconstructed by the maximum-likelihood method using IQ-TREE 2.2.0.3 software (Minh et al., 2020). Bootstrap values ​​are shown at the nodes above. Scale bar is 0.1 substitutions per nucleotide position.

Download (112KB)
5. Fig. 4. Ordered heat map constructed from the distribution matrix of ANI coefficients between genomes of the genus Methanosarcina.

Download (61KB)
6. Additional materials
Download (152KB)
7. Additional materials

Download (41KB)

Copyright (c) 2024 Russian Academy of Sciences