Genome analysis and reconstruction of metabolic pathways of amino acids and betaine degradation in the haloalkaliphilic bacteria Anoxynatronum sibiricum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genome of the haloalkaliphilic anaerobic microorganism Anoxynatronum sibiricum Z-7981T isolated earlier from the Nizhneye Beloye soda lake (Republic of Buryatia, Russia) was analyzed. The ability of the organism to use betaine as an electron acceptor in the Stickland reaction was revealed. The introduction of betaine into the medium not only stimulated growth on amino acids used by A. sibiricum individually, but also allowed identifying additional amino acids, growth on which was not possible without the acceptor. Based on the genomic characteristics and experimental growth data, metabolic schemes of amino acid degradation in the presence and absence of betaine were proposed. Schemes for threonine, glutamate and lysine when used together with betaine were compiled for the first time. For all amino acids used, the qualitative and quantitative composition of the metabolic products was determined and the stoichiometric substrate/product ratios were obtained. Balance equations for the identified variants of the Stickland reaction, including those previously not described in the literature, have been compiled.

Full Text

Restricted Access

About the authors

E. N. Detkova

FRC “Fundamentals of Biotechnology” of the RAS

Email: kevbrin@inmi.ru

S. N. Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

Yu. V. Boltyanskaya

FRC “Fundamentals of Biotechnology” of the RAS

Email: kevbrin@inmi.ru

S. N. Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

N. V. Pimenov

FRC “Fundamentals of Biotechnology” of the RAS

Email: kevbrin@inmi.ru

S. N. Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

A. V. Mardanov

FRC “Fundamentals of Biotechnology” of the RAS

Email: kevbrin@inmi.ru

K. G. Skryabin Institute of Bioengineering

Russian Federation, Moscow, 119071

V. V. Kevbrin

FRC “Fundamentals of Biotechnology” of the RAS

Author for correspondence.
Email: kevbrin@inmi.ru

S. N. Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

References

  1. Деткова Е. Н., Болтянская Ю. В., Кевбрин В. В. Деградация глицинбетаина в реакции Стикленда галоалкалофильной бактерией Halonatronomonas betaini , выделенной из содового озера Танатар III // Микробиология. 2022. Т. 91. С. 720–725.
  2. Detkova E. N., Boltyanskaya Y. V., Kevbrin V. V. Glycine betaine degradation via the Stickland reaction by a haloalkaliphilic bacterium Halonatronomonas betaini isolated from the Tanatar III soda lake // Microbiology (Moscow). 2022. V. 91. P. 721–726.
  3. Жилина Т. Н., Заварзин Г. А. Новая экстремально галофильная гомоацетатная бактерия Acetohalobium arabaticum gen. nov., sp. nov. // Доклады АН СССР. 1990. Т. 311. С. 745–747.
  4. Zhilina T. N., Zavarzin G. A. A new extremely halophilic homoacetic bacterium Acetohalobium arabaticum gen. nov., sp. nov. // Dokl. Akad. Nauk USSR. 1990. V. 311. P. 745–747.
  5. Заварзин Г. А., Жилина Т. Н., Кевбрин В. В. Алкалофильное микробное сообщество и его функциональное разнообразие // Микробиология. 1999. Т. 68. С. 579–599.
  6. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. The alkaliphilic microbial community and its functional diversity // Microbiology (Moscow). 1999. V. 68. P. 503–521.
  7. Andreesen J. R. Glycine reductase mechanism // Curr. Opin. Chem. Biol. 2004. V. 8. P. 454–461.
  8. Bezsudnova E.Yu., Boyko K. M., Popov V. O. Properties of bacterial and archaeal branched-chain amino acid aminotransferases // Biochemistry (Moscow). 2017. V. 82. Р. 1572–1591.
  9. Biegel E., Schmidt S., González J. M., Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes // Cell. Mol. Life Sci. 2011. V. 68. P. 613–634.
  10. Buckel W. Energy conservation in fermentations of anaerobic bacteria // Front. Microbiol. 2021. V. 12. Art. 703525.
  11. Buckel W. Unusual enzymes involved in five pathways of glutamate fermentation // Appl. Microbiol. Biotechnol. 2001. V. 57. P. 263–273.
  12. Chang A., Jeske L., Ulbrich S., Hofmann J., Koblitz J., Schomburg I., Neumann-Schaal M., Jahn D., Schomburg D. BRENDA, the ELIXIR core data resource in 2021: new developments and updates // Nucleic Acids Res. 2021. V. 49. P. D498–D508.
  13. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria // Microbiol. Rev. 1986. V. 50. P. 314–352.
  14. Fan C., Bobik T. A. The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis // J. Biol. Chem. 2008. V. 283. P. 11322–11329.
  15. Fonknechten N., Perret A., Perchat N., Tricot S., Lechaplais C., Vallenet D., Vergne C., Zaparucha A., Le Paslier D., Weissenbach J., Salanoubat M. A conserved gene cluster rules anaerobic oxidative degradation of L-ornithine // J. Bacteriol. 2009. V. 191. P. 3162–3167.
  16. Garnova E. S., Zhilina T. N., Tourova T. P., Lysenko A. M. Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region) // Extremophiles. 2003. V. 7. P. 213–220.
  17. Grant W. D., Jones B. E. Bacteria, archaea and viruses of soda lakes // Soda lakes of East Africa / Ed. Schagerl M. Springer International Publishing, Switzerland, 2016. P. 97–147.
  18. Heijthuijsen J. H.F.G., Hansen T. A. Anaerobic degradation of betaine by marine Desulfobacterium strains // Arch. Microbiol. 1989. V. 152. P. 393–396.
  19. Hetzel M., Brock M., Selmer T., Pierik A. J., Golding B. T., Buckel W. Acryloyl-CoA reductase from Clostridium propionicum . An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein // Eur. J. Biochem. 2003. V. 270. P. 902–910.
  20. Kreimeyer A., Perret A., Lechaplais C., Vallenet D., Médigue C., Salanoubat M., Weissenbach J. Identification of the last unknown genes in the fermentation pathway of lysine // J. Biol. Chem. 2007. V. 282. P. 7191–7197.
  21. La Cono V., Arcadi E., La Spada G., Barreca D., Laganà G., Bellocco E., Catalfamo M., Smedile F., Messina E., Giuliano L., Yakimov M. M. A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis // Microorganisms. 2015. V. 3. P. 500–517.
  22. Magoč T., Salzberg S. L. FLASH: fast length adjustment of short reads to improve genome assemblies // Bioinformatics. 2011. V. 27. P. 2957–2963.
  23. Mouné S., Manac’h N., Hirschler A., Caumette P., Willison J. C., Matheron R. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter / / Int. J. Syst. Bacteriol. 1999. V. 49. P. 103–112.
  24. Mullins E. A., Francois J. A., Kappock T. J. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti / / J. Bacteriol. 2008. V. 190. P. 4933–4940.
  25. Müller E., Fahlbusch K., Walther R., Gottschalk G. Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum / / Appl. Environ. Microbiol. 1981. V. 42. P. 439–445.
  26. Naumann E., Hippe H., Gottschalk G. Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes‒Methanosarcina barkeri coculture // Appl. Environ. Microbiol. 1983. V. 45. P. 474–483.
  27. Sorokin D. Y., Tourova T. P., Henstra A. M., Stams A. J.M., Galinski E. A., Muyzer G. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. a novel lineage of Deltaproteobacteria from hypersaline soda lakes // Microbiology (SGM). 2008. V. 154. P. 1444–1453.
  28. Sorokin D. Y. Microbial utilization of glycine betaine in hypersaline soda lakes // Microbiology (Moscow). 2021. V. 90. P. 569–577.
  29. Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium ): the chemical reactions by which Cl. sporogenes obtains its energy // Biochem. J. 1934. V. 28. Р. 1746–1759.
  30. Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., Lomsadze A., Pruitt K. D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline // Nucleic Acids Res. 2016. V. 44. P. 6614–6624.
  31. Vasilinetc I., Prjibelski A. D., Gurevich A., Korobeynikov A., Pevzner P. A. Assembling short reads from jumping libraries with large insert sizes // Bioinformatics. 2015. V. 31. P. 3262–3268.
  32. Wang H., Gunsalus R. P. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP // J. Bacteriol. 2003. V. 185. P. 5076–85.
  33. Wang S., Huang H., Kahnt J., Thauer R. K. Clostridium acidurici electron-bifurcating formate dehydrogenase // Appl. Environ. Microbiol. 2013. V. 79. P. 6176–6179.
  34. Zhilina T. N., Zavarzin G. A. Alkaliphilic anaerobic community at pH 10 // Curr. Microbiol. 1994. V. 29. P. 109–112.
  35. Zhilina T. N., Zavarzina D. G., Kolganova T. V., Lysenko A. M., Tourova T. P. Alkaliphilus peptidofermentans sp. nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction // Microbiology (Moscow). 2009. V. 78. P. 445–454.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Proposed metabolic scheme of threonine and serine degradation in A. sibiricum Z-7981T: a – without betaine; b – with betaine. BRC – betaine reductase complex. Substrates and products are shown in bold. Designations of genes and corresponding enzymes are given in Table S2 (supplementary materials).

Download (41KB)
3. Fig. 2. Proposed metabolic scheme of glutamate degradation in A. sibiricum Z-7981T: a – without betaine; b – with betaine. Substrates and products are shown in bold. Designations of genes and corresponding enzymes are given in Table S2 (supplementary materials).

Download (45KB)
4. Fig. 3. Proposed metabolic scheme of aspartate degradation by A. sibiricum Z-7981T. Substrates and products are shown in bold. Gene and enzyme designations are given in Table S2 (Supplementary Material).

Download (25KB)
5. Fig. 4. Proposed metabolic scheme of lysine degradation in A. sibiricum Z-7981T: a – without betaine; b – with betaine. Substrates and products are shown in bold. Designations of genes and corresponding enzymes are given in Table S2 (supplementary materials).

Download (40KB)
6. Fig. 5. Urea cycle during arginine degradation in A. sibiricum Z-7981T. Substrates and products are shown in bold. Gene and enzyme designations are given in Table S2 (Supplementary Material).

Download (15KB)
7. Fig. 6. Proposed metabolic scheme of alanine, leucine, isoleucine, valine, phenylalanine, and methionine degradation in the presence of betaine for A. sibiricum Z-7981T. Substrates and products are shown in bold. Gene and enzyme designations are given in Table S2 (Supplementary Material).

Download (20KB)
8. Additional materials
Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences