The structure of the biocrystalline nucleoid and its role in the regulation of dissociative phenotypic heterogeneity of microbial populations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The survival of the microbial population in constantly changing environmental conditions, including those unfavorable for growth, is ensured by: (1) the formation of a subpopulation of persister cells (P), maturing into ametabolic quiescent forms (RF); (2) protection of chromosomal DNA of stationary cells using the physicochemical mechanism of its co-crystallization with the nucleoid-associated protein Dps and the formation of a biocrystalline nucleoid (BN); (3) the ability of RF to germinate in a fresh environment with a mixed population of phenotypically different dissociators, one of which will be the most adaptive to it. This study addressed two questions: (1) how BN is structurally organized in prokaryotic RFs, and (2) how nucleoid biocrystallization is related to the phenotypic heterogeneity of populations growing from RFs. The work proposes a new model of BN decrystallization/recrystallization during heating/cooling of RF at sublethal temperatures in a non-growth environment, which reproduces the dynamics of BN formation in the model of nucleoid organization as a folded globule. Electron microscopic analysis of structural changes in BN in heated/cooled RFs, together with the determination of the dissociative spectra of the populations growing from them, allowed us to obtain the following new information. Biocrystallization of the nucleoid occurs in the following sequence: (1) the beginning co-crystallization of DNA-Dps is accompanied by the division of the nucleoid volume with the formation of a compacted nucleoid from superfolded DNA in the central region of the cell and loops of superfolded linear DNA extending from it; (2) co-crystallization of looped DNA-Dps with its different geometric arrangement – toroidal, lamellar, etc.; (3) crystallization of Dps-Dps, repeating the template folding of looped DNA-Dps and the formation of a multilayer structure of the Dps-Dps crystalline array. It was found that the actual heating of the PF (45‒700C, 15 min), leading to decrystallization of looped DNA-Dps while maintaining the structure of the compacted nucleoid, does not affect the dissociative (colonial-morphological) spectrum of the population growing from the PF. The change in its dissociative spectrum is influenced by the process of DNA-Dps recrystallization, during which, apparently, Dps binds not only to the former, but also to other DNA sites, also affinity for Dps and, possibly, partially occupied by other nucleoid-associated proteins, which influences changes in DNA topology and its transcription.

Full Text

Restricted Access

About the authors

G. I. El’-Registan

FRC Fundamental of Biotechnology RAS

Email: elenademkina@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

N. E. Suzina

Pushchino Scientific Center for Biological Research RASciences

Email: elenademkina@mail.ru

Scryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Pushchino, 142290

Е. V. Demkina

FRC Fundamental of Biotechnology RAS

Author for correspondence.
Email: elenademkina@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

Yu. A. Nikolaev

FRC Fundamental of Biotechnology RAS

Email: elenademkina@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow, 119071

References

  1. Кряжевских Н. А., Демкина Е. В., Лойко Н. Г., Колганова Т. В., Соина В. С., Манучарова Н. А., Гальченко В. Ф., Эль-Регистан Г.И. Сравнение адаптационного потенциала изолятов из вечномерзлых осадочных пород Аrthrobacter oxydans и Аcinetobacter lwoffii и их коллекционных аналогов // Микробиология. 2013. Т. 82. С. 27‒41.
  2. Kryazhevskikh N. A., Demkina E. V., Loiko N. G., Baslerov R. V., Kolganova T. V., Soina V. S., Manucharova N. A., Gal’chenko V.F., El’-Registan G.I. Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains // Microbiology (Moscow). 2013. V. 82. P. 29‒42.
  3. Лойко Н. Г., Козлова А. Н., Николаев Ю. А., Гапо нов А. М., Тутельян А. В., Эль-Регистан Г.И. Влияние стресса на образование антибиотикотолерантных клеток Escherichia coli // Микробиология. 2015. Т. 84. С. 595‒609.
  4. Loiko N. G., Kozlova A. N., Nikolaev Yu.A., Gaponov A. M., Tutel’yan A.V., El’-Registan G.I. Effect of stress on emergence of antibiotic-tolerant Escherichia coli cells // Microbiology (Moscow). 2015. V. 84. P. 595‒609.
  5. Лойко Н. Г., Сузина Н. Е., Соина В. С., Смирнова Т. А., Зубашева М. В., Азизбекян Р. Р., Синицын Д. О., Терешкина К. Б., Николаев Ю. А., Крупянский Ю. Ф., Эль-Регистан Г.И. Биокристаллические структуры в нуклеоидах стационарных и покоящихся клеток прокариот // Микробиология. 2017. Т. 86. С. 703–719.
  6. Loiko N. G., Suzina N. E., Soina V. S., Smirnova T. A., Zubasheva M. V., Azizbekyan R. R., Sinitsyn D. O., Tereshkina K. B., Nikolaev Yu.A., Krupyanskii Yu.F., El’-Registan G.I. Biocrystalline structures in the nucleoids of the stationary and dormant prokaryotic cells // Microbiology (Moscow). 2017. V. 86. P. 714‒727.
  7. Мулюкин А. Л., Козлова А. Н., Сорокин В. В., Сузина Н. Е., Чердынцева Т. А., Котова И . Б., Гапонов А. М., Тутельян А. В., Эль-Регистан Г .И. Формы выживания Pseudomonas aeruginosa при антибиотической обработке // Mикробиология. 2015. Т. 84. С. 645–659.
  8. Mulyukin A. L., Kozlova A. N., Sorokin V. V., Suzina N. E., Cherdyntseva T. A., Kotova I. B., Gaponov A. M., Tutel’yan A.V., El’-Registan G.I. Surviving forms in antibiotic-treated Pseudomonas aeruginosa // Microbiology (Moscow). 2015. V. 84. P. 751‒763.
  9. Мулюкин А. Л., Сузина Н. Е., Мельников В. Г., Гальченко В. Ф., Эль-Регистан Г.И. Состояние покоя и фенотипическая вариабельность у Staphylococcus aureus и Corynebacterium pseudodiphtheriticum // Микробиология. 2014. Т. 83. С. 15–27.
  10. Mulyukin A. L., Suzina N. E., Mel’nikov V.G., Gal’chenko V.F., El’-Registan G.I . Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum // Microbiology (Moscow). 2014. V. 83. P. 149‒159.
  11. Николаев Ю. А., Лойко Н . Г., Демкина Е. В., Атрощик Е. А., Константинов А. И., Перминова И. В., Эль-Регистан Г.И. Функциональная активность гуминовых веществ в пролонгировании выживания популяции углеводородокисляющей бактерии Аcinetobacter junii // Микробиология. 2020. Т. 89. С. 74‒87.
  12. Nikolaev Yu.A., Loiko N. G., Demkina E. V., Atroshchik E. A., Konstantinov A. I., Perminova I. V., El’-Registan G.I. Functional activity of humic substances in survival prolongation of populations of hydrocarbon-oxidizing bacteria Acinetobacter junii // Microbiology (Moscow). 2020. V. 89. P. 74‒85.
  13. Эль-Регистан Г.И., Мулюкин А. Л., Николаев Ю. А., Сузина Н. Е., Гальченко В. Ф., Дуда В. И. Адаптогенные функции внеклеточных ауторегуляторов микроорганизмов // Микробиология. 2006. Т. 75. С. 446‒456.
  14. El-Registan G.I., Mulyukin A. L., Nikolaev Yu.A., Suzina N. E., Gal’chenko V.F., Duda V. I. Adaptogenic functions of extracellular autoregulators of microorganisms // Microbiology (Moscow). 2006. V. 75. P. 380‒389.
  15. Abbondanzieri E. A., Vtyurina N., Meyer A . Nucleoid reorganization by the stress response protein Dps // Biophys. J. 2014. V. 106. Р. 79a.
  16. Albi E., Magni M. P.V. The role of intranuclear lipids // Biol. Cell. 2004. V. 96. Р. 657‒667.
  17. Antipov S. S., Tutukina M. N., Preobrazhenskaya E. V., Kondrashov F. A., Patrushev M. V., Toshchakov S. V., Dominova I., Shvyreva U. S., Vrublevskaya V. V., Morenkov O. S., Sukharicheva N. A., Panyukov V. V., Ozoline O. N. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner // PLoS One. 2017. V. 12. Art. e0182800.
  18. Azam T. A., Iwata A., Nishimura A., Ueda S., Ishihama A . Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid // J. Bacteriol. 1999. V. 181. Р. 6361‒6370.
  19. Balaban N. Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D. I., Brynildsen M. P., Bumann D., Camilli A., Collins J. J., Dehio C., Fortune S., Ghigo J.-M., Hardt W.-D, Harms A., Heinemann M., Hung D. T., Jenal U., Levin B. R., Michiels J., Storz G., Tan M.-W., Tenson T., Melderen L.Van, Zinkernagel A. Definitions and guidelines for research on antibiotic persistence // Nat. Rev. Microbiol. 2019. V. 17. Р. 441–448.
  20. Dadinova L. A., Chesnokov Y. M., Kamyshinsky R. A., Orlov I. A., Petoukhov M. V., Mozhaev A. A., Soshinskaya E. Yu., Lazarev V. N., Manuvera V. A., Orekhov A. S., Vasiliev A. L. , Shtykova E. V. Protective Dps–DNA co-crystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography // FEBS Lett. 2019. V. 593. Р. 1360–1371.
  21. Dame R. T., Rashid F. Z.M., Grainger D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function // Nature Rev. Genet. 2020. V. 21. Р. 227‒242.
  22. Espeli O., Mercier R., Boccard F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome // Mol. Microbiol. 2008. V. 68. Р. 1418‒1427.
  23. Frenkiel-Krispin D., Ben-Avraham I., Englander J., Shimoni E., Wolf S. G., Minsky A. Nucleoid restructuring in stationary-state bacteria // Mol. Microbiol. 2004. V. 51. Р. 395–405.
  24. Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S. G., Wachtel E. J., Arad T., Minsky A . Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection // EMBO J. 2001. V. 20. Р. 1184‒1191.
  25. Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA // Nature Struct. Biol. 1998. V. 5. Р. 294–303.
  26. Grosberg A. Y., Nechaev S. K., Shakhnovich E. I. The role of topological constraints in the kinetics of collapse of macromolecules // J. Physique. 1988. V. 49. Р. 2095‒2100.
  27. Karas V. O., Westerlaken I., Meyer A. S. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses // J. Bacteriol. 2015. V. 197. Р. 3206‒3215.
  28. Krupyanskii Y. F., Loiko N. G., Sinitsyn D. O., Tereshkina K. B., Tereshkin E. V., Frolov I. A., Chulichkov A. L., Bokareva D. A., Mysyakina I. S., Nikolaev Y. A., El’-Registan G.I., Popov V. O., Sokolova O. S., Shaitan K. V. , Popov A. N. Biocrystallization in bacterial and fungal cells and spores // Crystallogr. Rep. 2018. V. 63. Р. 594‒599.
  29. Krupyanskii Y. F. Determination of DNA architecture of bacteria under various types of stress, methodological approaches, problems, and solutions // Biophys. Rev. 2023. V. 15. Р. 1035‒1051.
  30. Melekhov V. V., Shvyreva U. S., Timchenko A. A., Tutukina M. N., Preobrazhenskaya E. V., Burkova D. V., Artiukhov V. G., Ozoline O. N., Antipov S. S. Modes of Escherichia coli Dps interaction with DNA as revealed by atomic force microscopy // PLoS One. 2015. V. 10. Art. e0126504.
  31. Mika J. T., Poolman B. Macromolecule diffusion and confinement in prokaryotic cells // Curr. Opin. Biotechnol. 2011. V. 22. Р. 117‒126.
  32. Minsky A., Shimoni E., Frenkiel-Krispin D. Stress, order and survival // Nature Rev. Mol. Cell Biol. 2002. V. 3. P. 50–60.
  33. Mourão M. A., Hakim J. B., Schnell S. Connecting the dots: the effects of macromolecular crowding on cell physiology // Biophys. J. 2014. V. 107. Р. 2761‒2766.
  34. Nikolaev Y. A., Loiko N. G., Galuza O. A., Mardanov A. V., Beletskii A. V., Deryabin D. G., Demkina E. V., El’-Registan G.I. Transcriptome analysis of Escherichia coli dormant cystlike cells // Microbiology (Moscow). 2023. V. 92. Р. 775‒791.
  35. Orban K., Finkel S. E. Dps is a universally conserved dual-action DNA-binding and ferritin protein // J. Bacteriol. 2022. V. 204. Art. e00036-22.
  36. Parry B. R., Surovtsev I. V., Cabeen M. T., O’Hern C.S., Dufresne E. R., Jacobs-Wagner C. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity // Cell. 2014. V. 156. Р. 183‒194.
  37. Postow L., Hardy C. D., Arsuaga J., Cozzarelli N. R. Topological domain structure of the Escherichia coli chromosome // Genes Dev. 2004. V. 18. Р . 1766‒1779.
  38. Soina V. S., Mulyukin A. L., Demkina E. V., Vorobyova E. A., El-Registan G.I. The structure of resting microbial populations in soil and subsoil permafrost // Astrobiology. 2004. V. 4. P. 348‒358.
  39. Suzina N. E., Mulyukin A. L., Dmitriev V. V., Nikolaev Yu.A., Shorokhova A. P., Bobkova Yu.S., Barinova E. S. , Plakunov V. K., El-Registan G.I., Duda V. I. The structural bases of long-term anabiosis in non-spore-forming bacteria // J. Adv. Space Res. 2006. V. 38. P.1209‒1219.
  40. Van den Bergh B., Michiels J. E., Wenseleers T., Windels E. M., Boer P. V., Kestemont D., De Meester L., Verstrepen K. J., Verstraeten N., Fauvart M., Michiels J . Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence // Nat. Microbiol. 2016. V. 1. Art. 16020.
  41. Vtyurina N. N. , Dulin D., Docter M. W., Meyer A. S., Dekker N. H., Abbondanzieri E. A. Hysteresis in DNA compaction by Dps is described by an Ising model // Proc. Natl. Acad. Sci. USA. 2016. V. 113. Р. 4982‒4987.
  42. Willenbrock H., Ussery D. W. Chromatin architecture and gene expression in Escherichia coli // Genome Biol. 2004.V. 5. Art. 252.
  43. Zaccarelli E., Buldyrev S. V., La Nave E., Moreno A. J., Saika-Voivod I., Sciortino F., Tartaglia P. Model for reversible colloidal gelation // Phys. Rev. Lett. 2005. V. 94. Art. 218301.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thin sections of intact PF E. coli (3 months): a – thin-walled type I PF; b – multilayered type II PF. Visible: compacted nucleoid region (a, b, e); multilayered membrane of type II PF (b); lamellar DNA-Dps and/or Dps-Dps packing (d); toroidal DNA-Dps and/or Dps-Dps packing (c). Scale bar – 0.2 µm.

Download (66KB)
3. Fig. 2. Thin sections of intact PF of P. extremaustralis (3 months): a – PF type I; b – PF type II. Visible: lamellar packing of DNA-Dps and/or Dps-Dps (c, d); toroidal packing of DNA-Dps (d). Scale bar – 0.2 µm.

Download (93KB)
4. Fig. 3. Thin sections of intact PF of R. erythropolis (3 months): a, b – PF type I; c – PF type II. Visible: compacted nucleoid (a, b); liquid crystalline structure of DNA of compacted nucleoid of isotropic type (b); membrane-like linear structures (b); multilayer packing and loop of linear DNA-Dps (c). Scale bar – 0.2 µm.

Download (132KB)
5. Fig. 4. Thin sections of E. coli PF heated to 50°C, instant fixation. Visible: melt of biocrystalline nucleoid (BN); liquid crystal structure of compacted isotropic nucleoid. Scale bar – 0.2 µm.

Download (30KB)
6. Fig. 5. Thin sections of E. coli PF heated to 55°C, instant fixation: melting of the toroidal structure in type I PF. Visible: toroids that retained the biocrystalline structure and DNA-Dps strands. Magnification – DNA-Dps strand extending from the toroid (b). Scale mark – 0.2 µm.

Download (72KB)
7. Fig. 6. Thin sections of E. coli PF heated to 65°C, instant fixation: cell with melted BN. Individual islands of dense BN packing are visible (a, b, c); DNA-Dps strands (b); fragments of melted BN Dps-Dps (b, c, d). Scale mark – 0.2 µm.

Download (64KB)
8. Fig. 7. Thin sections of E. coli PF heated to 55°C, rapid cooling. Visible: expanded periplasmic space in heated PF (a); linear DNA-Dps strand (b); liquid crystal structure of DNA of cholesteric-type biocrystalline nucleoid. Scale bar – 0.2 µm.

Download (48KB)
9. Fig. 8. Thin sections of E. coli PF heated to 65°C, rapid cooling: a-e – protoplast plasmolysis and BN melting. Visible: enlargement of the periplasmic space (a, b); fragments of the Dps-Dps packing in the periplasmic space (b); remnants of dense packing of the biocrystal (a). Scale mark – 0.2 μm.

Download (38KB)
10. Fig. 9. Heating of E. coli PF heated to 55°C, slow cooling: a, b – plasmolysis, beginning of BN recrystallization. In cooled PF the following are visible: compacted BN areas (a); formation of toroids (a, b). Scale mark – 0.2 µm.

Download (62KB)
11. Fig. 10. Thin sections of R. erythropolis PF heated to 60°C, rapid cooling: a–g – compacted nucleoid. Visible: areas of retained structure of liquid crystalline DNA of cholesteric (c, d) and isotropic type of compacted nucleoid (b); packing of DNA-Dps strands (a, b), including toroidal type (b). Scale bar – 0.2 µm.

Download (69KB)
12. Fig. 11. Thin sections of R. erythropolis PF heated to 50°C, rapid cooling: a – cell with fairly well-preserved BN. Visible: liquid crystalline DNA of the compacted nucleoid that has retained its structure. Scale bar – 0.2 µm.

Download (47KB)
13. Fig. 12. Thin sections of R. erythropolis PF heated to 60°C, slow cooling. Visible: a, b – compacted nucleoid, which has practically restored its BN structure (a, b); toroidal structures of DNA-Dps (a); loop of the linear DNA-Dps strand (b). Scale mark – 0.2 µm.

Download (58KB)
14. Fig. 13. Thin sections of R. erythropolis PF heated to 70°C, rapid cooling: a, b – restoration of BN. Visible: formation and packing of linear DNA-Dps strands (a); preserved packing of supercoiled DNA strands of compacted cholesteric nucleoid (b). Scale bar – 0.2 µm.

Download (50KB)
15. Fig. 14. Thin sections of P. extremaustralis PF heated to 60°C, slow cooling (a–d). Visible: intact PF type II (a) and type I (b) with inclusions of poly-β-hydroxybutyric acid (POMC) (b); DNA strands of the compact nucleoid that has lost its structure (c); self-assembly of DNA-Dps strands into “toroidal” structures (d, d). Scale bar – 0.2 μm.

Download (60KB)
16. Additional materials
Download (2MB)
17. Additional materials. 1S

Download (38KB)
18. Дополнительные материалы. 2S

Download (39KB)
19. Дополнительные материалы. 3S

Download (58KB)
20. Additional materials. 4S

Download (30KB)
21. Additional materials. S5

Download (69KB)
22. Additional materials. 6S

Download (38KB)
23. Additional materials. 7S

Download (32KB)
24. Additional materials. 8S

Download (48KB)
25. Additional materials. 9S

Download (49KB)
26. Additional materials. 10S

Download (67KB)
27. Additional materials. 11S

Download (36KB)
28. Additional materials. 12S

Download (42KB)
29. Additional materials. 13S

Download (33KB)
30. Additional materials. 14S

Download (64KB)

Copyright (c) 2024 Russian Academy of Sciences