The structure of the biocrystalline nucleoid and its role in the regulation of dissociative phenotypic heterogeneity of microbial populations
- Authors: El’-Registan G.I.1, Suzina N.E.2, Demkina Е.V.1, Nikolaev Y.A.1
-
Affiliations:
- FRC Fundamental of Biotechnology RAS
- Pushchino Scientific Center for Biological Research RASciences
- Issue: Vol 93, No 6 (2024)
- Pages: 715-731
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655055
- DOI: https://doi.org/10.31857/S0026365624060045
- ID: 655055
Cite item
Abstract
The survival of the microbial population in constantly changing environmental conditions, including those unfavorable for growth, is ensured by: (1) the formation of a subpopulation of persister cells (P), maturing into ametabolic quiescent forms (RF); (2) protection of chromosomal DNA of stationary cells using the physicochemical mechanism of its co-crystallization with the nucleoid-associated protein Dps and the formation of a biocrystalline nucleoid (BN); (3) the ability of RF to germinate in a fresh environment with a mixed population of phenotypically different dissociators, one of which will be the most adaptive to it. This study addressed two questions: (1) how BN is structurally organized in prokaryotic RFs, and (2) how nucleoid biocrystallization is related to the phenotypic heterogeneity of populations growing from RFs. The work proposes a new model of BN decrystallization/recrystallization during heating/cooling of RF at sublethal temperatures in a non-growth environment, which reproduces the dynamics of BN formation in the model of nucleoid organization as a folded globule. Electron microscopic analysis of structural changes in BN in heated/cooled RFs, together with the determination of the dissociative spectra of the populations growing from them, allowed us to obtain the following new information. Biocrystallization of the nucleoid occurs in the following sequence: (1) the beginning co-crystallization of DNA-Dps is accompanied by the division of the nucleoid volume with the formation of a compacted nucleoid from superfolded DNA in the central region of the cell and loops of superfolded linear DNA extending from it; (2) co-crystallization of looped DNA-Dps with its different geometric arrangement – toroidal, lamellar, etc.; (3) crystallization of Dps-Dps, repeating the template folding of looped DNA-Dps and the formation of a multilayer structure of the Dps-Dps crystalline array. It was found that the actual heating of the PF (45‒700C, 15 min), leading to decrystallization of looped DNA-Dps while maintaining the structure of the compacted nucleoid, does not affect the dissociative (colonial-morphological) spectrum of the population growing from the PF. The change in its dissociative spectrum is influenced by the process of DNA-Dps recrystallization, during which, apparently, Dps binds not only to the former, but also to other DNA sites, also affinity for Dps and, possibly, partially occupied by other nucleoid-associated proteins, which influences changes in DNA topology and its transcription.
Full Text

About the authors
G. I. El’-Registan
FRC Fundamental of Biotechnology RAS
Email: elenademkina@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, Moscow, 119071N. E. Suzina
Pushchino Scientific Center for Biological Research RASciences
Email: elenademkina@mail.ru
Scryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, Pushchino, 142290Е. V. Demkina
FRC Fundamental of Biotechnology RAS
Author for correspondence.
Email: elenademkina@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, Moscow, 119071Yu. A. Nikolaev
FRC Fundamental of Biotechnology RAS
Email: elenademkina@mail.ru
Winogradsky Institute of Microbiology
Russian Federation, Moscow, 119071References
- Кряжевских Н. А., Демкина Е. В., Лойко Н. Г., Колганова Т. В., Соина В. С., Манучарова Н. А., Гальченко В. Ф., Эль-Регистан Г.И. Сравнение адаптационного потенциала изолятов из вечномерзлых осадочных пород Аrthrobacter oxydans и Аcinetobacter lwoffii и их коллекционных аналогов // Микробиология. 2013. Т. 82. С. 27‒41.
- Kryazhevskikh N. A., Demkina E. V., Loiko N. G., Baslerov R. V., Kolganova T. V., Soina V. S., Manucharova N. A., Gal’chenko V.F., El’-Registan G.I. Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains // Microbiology (Moscow). 2013. V. 82. P. 29‒42.
- Лойко Н. Г., Козлова А. Н., Николаев Ю. А., Гапо нов А. М., Тутельян А. В., Эль-Регистан Г.И. Влияние стресса на образование антибиотикотолерантных клеток Escherichia coli // Микробиология. 2015. Т. 84. С. 595‒609.
- Loiko N. G., Kozlova A. N., Nikolaev Yu.A., Gaponov A. M., Tutel’yan A.V., El’-Registan G.I. Effect of stress on emergence of antibiotic-tolerant Escherichia coli cells // Microbiology (Moscow). 2015. V. 84. P. 595‒609.
- Лойко Н. Г., Сузина Н. Е., Соина В. С., Смирнова Т. А., Зубашева М. В., Азизбекян Р. Р., Синицын Д. О., Терешкина К. Б., Николаев Ю. А., Крупянский Ю. Ф., Эль-Регистан Г.И. Биокристаллические структуры в нуклеоидах стационарных и покоящихся клеток прокариот // Микробиология. 2017. Т. 86. С. 703–719.
- Loiko N. G., Suzina N. E., Soina V. S., Smirnova T. A., Zubasheva M. V., Azizbekyan R. R., Sinitsyn D. O., Tereshkina K. B., Nikolaev Yu.A., Krupyanskii Yu.F., El’-Registan G.I. Biocrystalline structures in the nucleoids of the stationary and dormant prokaryotic cells // Microbiology (Moscow). 2017. V. 86. P. 714‒727.
- Мулюкин А. Л., Козлова А. Н., Сорокин В. В., Сузина Н. Е., Чердынцева Т. А., Котова И . Б., Гапонов А. М., Тутельян А. В., Эль-Регистан Г .И. Формы выживания Pseudomonas aeruginosa при антибиотической обработке // Mикробиология. 2015. Т. 84. С. 645–659.
- Mulyukin A. L., Kozlova A. N., Sorokin V. V., Suzina N. E., Cherdyntseva T. A., Kotova I. B., Gaponov A. M., Tutel’yan A.V., El’-Registan G.I. Surviving forms in antibiotic-treated Pseudomonas aeruginosa // Microbiology (Moscow). 2015. V. 84. P. 751‒763.
- Мулюкин А. Л., Сузина Н. Е., Мельников В. Г., Гальченко В. Ф., Эль-Регистан Г.И. Состояние покоя и фенотипическая вариабельность у Staphylococcus aureus и Corynebacterium pseudodiphtheriticum // Микробиология. 2014. Т. 83. С. 15–27.
- Mulyukin A. L., Suzina N. E., Mel’nikov V.G., Gal’chenko V.F., El’-Registan G.I . Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum // Microbiology (Moscow). 2014. V. 83. P. 149‒159.
- Николаев Ю. А., Лойко Н . Г., Демкина Е. В., Атрощик Е. А., Константинов А. И., Перминова И. В., Эль-Регистан Г.И. Функциональная активность гуминовых веществ в пролонгировании выживания популяции углеводородокисляющей бактерии Аcinetobacter junii // Микробиология. 2020. Т. 89. С. 74‒87.
- Nikolaev Yu.A., Loiko N. G., Demkina E. V., Atroshchik E. A., Konstantinov A. I., Perminova I. V., El’-Registan G.I. Functional activity of humic substances in survival prolongation of populations of hydrocarbon-oxidizing bacteria Acinetobacter junii // Microbiology (Moscow). 2020. V. 89. P. 74‒85.
- Эль-Регистан Г.И., Мулюкин А. Л., Николаев Ю. А., Сузина Н. Е., Гальченко В. Ф., Дуда В. И. Адаптогенные функции внеклеточных ауторегуляторов микроорганизмов // Микробиология. 2006. Т. 75. С. 446‒456.
- El-Registan G.I., Mulyukin A. L., Nikolaev Yu.A., Suzina N. E., Gal’chenko V.F., Duda V. I. Adaptogenic functions of extracellular autoregulators of microorganisms // Microbiology (Moscow). 2006. V. 75. P. 380‒389.
- Abbondanzieri E. A., Vtyurina N., Meyer A . Nucleoid reorganization by the stress response protein Dps // Biophys. J. 2014. V. 106. Р. 79a.
- Albi E., Magni M. P.V. The role of intranuclear lipids // Biol. Cell. 2004. V. 96. Р. 657‒667.
- Antipov S. S., Tutukina M. N., Preobrazhenskaya E. V., Kondrashov F. A., Patrushev M. V., Toshchakov S. V., Dominova I., Shvyreva U. S., Vrublevskaya V. V., Morenkov O. S., Sukharicheva N. A., Panyukov V. V., Ozoline O. N. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner // PLoS One. 2017. V. 12. Art. e0182800.
- Azam T. A., Iwata A., Nishimura A., Ueda S., Ishihama A . Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid // J. Bacteriol. 1999. V. 181. Р. 6361‒6370.
- Balaban N. Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D. I., Brynildsen M. P., Bumann D., Camilli A., Collins J. J., Dehio C., Fortune S., Ghigo J.-M., Hardt W.-D, Harms A., Heinemann M., Hung D. T., Jenal U., Levin B. R., Michiels J., Storz G., Tan M.-W., Tenson T., Melderen L.Van, Zinkernagel A. Definitions and guidelines for research on antibiotic persistence // Nat. Rev. Microbiol. 2019. V. 17. Р. 441–448.
- Dadinova L. A., Chesnokov Y. M., Kamyshinsky R. A., Orlov I. A., Petoukhov M. V., Mozhaev A. A., Soshinskaya E. Yu., Lazarev V. N., Manuvera V. A., Orekhov A. S., Vasiliev A. L. , Shtykova E. V. Protective Dps–DNA co-crystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography // FEBS Lett. 2019. V. 593. Р. 1360–1371.
- Dame R. T., Rashid F. Z.M., Grainger D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function // Nature Rev. Genet. 2020. V. 21. Р. 227‒242.
- Espeli O., Mercier R., Boccard F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome // Mol. Microbiol. 2008. V. 68. Р. 1418‒1427.
- Frenkiel-Krispin D., Ben-Avraham I., Englander J., Shimoni E., Wolf S. G., Minsky A. Nucleoid restructuring in stationary-state bacteria // Mol. Microbiol. 2004. V. 51. Р. 395–405.
- Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S. G., Wachtel E. J., Arad T., Minsky A . Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection // EMBO J. 2001. V. 20. Р. 1184‒1191.
- Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA // Nature Struct. Biol. 1998. V. 5. Р. 294–303.
- Grosberg A. Y., Nechaev S. K., Shakhnovich E. I. The role of topological constraints in the kinetics of collapse of macromolecules // J. Physique. 1988. V. 49. Р. 2095‒2100.
- Karas V. O., Westerlaken I., Meyer A. S. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses // J. Bacteriol. 2015. V. 197. Р. 3206‒3215.
- Krupyanskii Y. F., Loiko N. G., Sinitsyn D. O., Tereshkina K. B., Tereshkin E. V., Frolov I. A., Chulichkov A. L., Bokareva D. A., Mysyakina I. S., Nikolaev Y. A., El’-Registan G.I., Popov V. O., Sokolova O. S., Shaitan K. V. , Popov A. N. Biocrystallization in bacterial and fungal cells and spores // Crystallogr. Rep. 2018. V. 63. Р. 594‒599.
- Krupyanskii Y. F. Determination of DNA architecture of bacteria under various types of stress, methodological approaches, problems, and solutions // Biophys. Rev. 2023. V. 15. Р. 1035‒1051.
- Melekhov V. V., Shvyreva U. S., Timchenko A. A., Tutukina M. N., Preobrazhenskaya E. V., Burkova D. V., Artiukhov V. G., Ozoline O. N., Antipov S. S. Modes of Escherichia coli Dps interaction with DNA as revealed by atomic force microscopy // PLoS One. 2015. V. 10. Art. e0126504.
- Mika J. T., Poolman B. Macromolecule diffusion and confinement in prokaryotic cells // Curr. Opin. Biotechnol. 2011. V. 22. Р. 117‒126.
- Minsky A., Shimoni E., Frenkiel-Krispin D. Stress, order and survival // Nature Rev. Mol. Cell Biol. 2002. V. 3. P. 50–60.
- Mourão M. A., Hakim J. B., Schnell S. Connecting the dots: the effects of macromolecular crowding on cell physiology // Biophys. J. 2014. V. 107. Р. 2761‒2766.
- Nikolaev Y. A., Loiko N. G., Galuza O. A., Mardanov A. V., Beletskii A. V., Deryabin D. G., Demkina E. V., El’-Registan G.I. Transcriptome analysis of Escherichia coli dormant cystlike cells // Microbiology (Moscow). 2023. V. 92. Р. 775‒791.
- Orban K., Finkel S. E. Dps is a universally conserved dual-action DNA-binding and ferritin protein // J. Bacteriol. 2022. V. 204. Art. e00036-22.
- Parry B. R., Surovtsev I. V., Cabeen M. T., O’Hern C.S., Dufresne E. R., Jacobs-Wagner C. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity // Cell. 2014. V. 156. Р. 183‒194.
- Postow L., Hardy C. D., Arsuaga J., Cozzarelli N. R. Topological domain structure of the Escherichia coli chromosome // Genes Dev. 2004. V. 18. Р . 1766‒1779.
- Soina V. S., Mulyukin A. L., Demkina E. V., Vorobyova E. A., El-Registan G.I. The structure of resting microbial populations in soil and subsoil permafrost // Astrobiology. 2004. V. 4. P. 348‒358.
- Suzina N. E., Mulyukin A. L., Dmitriev V. V., Nikolaev Yu.A., Shorokhova A. P., Bobkova Yu.S., Barinova E. S. , Plakunov V. K., El-Registan G.I., Duda V. I. The structural bases of long-term anabiosis in non-spore-forming bacteria // J. Adv. Space Res. 2006. V. 38. P.1209‒1219.
- Van den Bergh B., Michiels J. E., Wenseleers T., Windels E. M., Boer P. V., Kestemont D., De Meester L., Verstrepen K. J., Verstraeten N., Fauvart M., Michiels J . Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence // Nat. Microbiol. 2016. V. 1. Art. 16020.
- Vtyurina N. N. , Dulin D., Docter M. W., Meyer A. S., Dekker N. H., Abbondanzieri E. A. Hysteresis in DNA compaction by Dps is described by an Ising model // Proc. Natl. Acad. Sci. USA. 2016. V. 113. Р. 4982‒4987.
- Willenbrock H., Ussery D. W. Chromatin architecture and gene expression in Escherichia coli // Genome Biol. 2004.V. 5. Art. 252.
- Zaccarelli E., Buldyrev S. V., La Nave E., Moreno A. J., Saika-Voivod I., Sciortino F., Tartaglia P. Model for reversible colloidal gelation // Phys. Rev. Lett. 2005. V. 94. Art. 218301.
Supplementary files
