Changes in the protein profiles of planktonic cultures and biofilms of Staphylococcus epidermidis under anaerobic conditions in the presence of the hormone CNP

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Natriuretic peptides (NP) are able to affect biofilms of human commensal microorganisms, including representatives of the genus Staphylococcus, however, the literature lacks data on the molecular changes caused by these hormones at the posttranslational level. In this regard, the present work shows for the first time that C-type natriuretic peptide (CNP) induces large changes in protein profiles of Staphylococcus aureus cells and biofilms. The presence of the hormone leads to a more pronounced difference in protein profiles between planktonic cells and biofilms when compared to control pairs of samples. The main processes affected are TCA cycle, protein transport, purine synthesis (decrease in the amount of the corresponding proteins in biofilms) and nitrate metabolism (increase in the amount of nitrogenases and other proteins in biofilms). It is necessary to mention separately the decreased amount of lysostaphin in biofilms compared to planktonic cultures when exposed to CNP. This may be one of the potential mechanisms of the recently shown reduction of competitive properties of S. epidermidis in the community with other microorganisms, which is induced by the presence of CNP in the medium. In addition, the results of the study strengthen the hypothesis that, as in the case of other human hormones, the action of CNP on S. epidermidis , is multitargeted. One of the likely mechanisms of the hormone’s action may be the disruption of the transition from planktonic culture to biofilm, which can be assumed without suppressing cell growth, which needs further verification.

Full Text

Restricted Access

About the authors

A. V. Gannesen

FRC “Fundamentals of biotechnology” of RAS

Author for correspondence.
Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

R. H. Ziganshin

Shemyakin-Ovchinnikov Institute of bioorganic chemistry of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 117997

M. A. Ovcharova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

A. M. Mosolova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

N. A. Loginova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

E. V. Diuvenji

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

E. D. Nevolina

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

S. V. Mart’yanov

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

V. K. Plakunov

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Russian Federation, Moscow, 119071

References

  1. Г аннесен А.В., Лезуатье О., Нетрусов А. И., Плакунов В. К., Фейоле М. Ж. Регуляция натрийуретическими пептидами формирования моновидовых и бинарных биопленок бактерий микробиоты кожи Staphylococcus epidermidis и Staphylococcus aureus // Микробиология. 2018. Т. 87. С. 469‒482.
  2. Gannesen A. V., Lesouhaitier O., Netrusov A. I., Plakunov V. K., Feuilloley M. G. Regulation of formation of monospecies and binary biofilms by human skin microbiota components, Staphylococcus epidermidis and Staphylococcus aureus , by human natriuretic peptides // Microbiology (Moscow). 2018. V. 87. P. 597‒609.
  3. Дювенжи Е. В., Неволина Е. Д., Мартьянов С. В., Журина М. В., Калмантаева О. В., Макарова М. А., Бочкова Е. А., Фирстова В. В., Плакунов В. К., Ганнесен А. В. Бинарные биопленки Staphylococcus aureus 209P и Kytococcus schroeteri H01: дуалистическая роль китококков и изменения клеточной адгезии в присутствии натрийуретического пептида а-типа // Микробиология. 2022. Т. 91. С. 597‒612.
  4. Diuvenji E. V., Nevolina E. D., Mart’yanov S.V., Zhurina M. V., Kalmantaeva O. V., Makarova M. A., Botchkova E. A., Firstova V. V., Plakunov V. K., Gannesen A. V. Binary biofilms of Staphylococcus aureus 209P and Kytococcus schroeteri H01: dualistic role of kytococci and cell adhesion alterations in the presence of the A-type natriuretic peptide // Microbiology (Moscow). 2022. V. 91. P. 563‒576.
  5. Benjamini Y., Krieger A. M., Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate // Biometrika. 2006. V. 93. P. 491‒507.
  6. Gannesen A. V. Lesouhaitier O., Racine P. J., Barreau M., Netrusov A. I., Plakunov V. K., Feuilloley M. G.J. Regulation of monospecies and mixed biofilms formation of skin Staphylococcus aureus and Cutibacterium acnes by human natriuretic peptides // Front. Microbiol. 2018. V. 9. Art. 2912.
  7. Gannesen A. V., Ziganshin R. H., Ovcharova M. A., Nevolina E. D., Klimko A. I., Mart’yanov S.V., Plakunov V. K. Epinephrine affects ribosomes, cell division, and catabolic processes in Micrococcus luteus skin strain C01: revelation of the conditionally extensive hormone effect using orbitrap mass spectrometry and proteomic analysis // Microorganisms. 2023. V. 11. Art. 2181.
  8. Ikeda K., Ikeda T., Onizuka T., Terashi H., Fukuda T. C-type natriuretic peptide concentrations in the plasma and cerebrospinal fluid of patients with subarachnoid hemorrhage // Crit. Care. 2000. V. 5. P. 37‒40.
  9. Kalaycı-Yüksek F., Gümüş D., Anğ-Küçüker M. Hormones can influence antibiotic susceptibilities even in mono-and co-culture conditions // Acta Biologica Marisiensis. 2021. V. 4. P. 39‒49.
  10. Kalaycı-Yüksek F., Gümüş D., Güler V., Uyanık-Öcal A., Anğ-Küçüker M . Progesterone and estradiol alter the growth, virulence and antibiotic susceptibilities of Staphylococcus aureus // New Microbiol. 2023. V. 46. P. 43‒51.
  11. Kovalchuk S. I., Jensen O. N., Rogowska-Wrzesinska A . FlashPack: fast and simple preparation of ultrahigh-performance capillary columns for LC-MS // Mol. Cell. Proteomics. 2019. V 18. P. 383‒390.
  12. Kulak N. A., Pichler G., Paron I., Nagaraj N., Mann M . Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells // Nat. Methods. 2014. V. 11. P. 319‒324.
  13. Louis M., Tahrioui A., Tremlett C. J., Clamens T., Leprince J., Lefranc B., Kipnis E., Grandjean T., Bouffartigues E., Barreau M., Defontaine F., Cornelis P., Feuilloley M. G.J., Harmer N. J., Chevalier S., Lesouhaitier O . The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm // Biofilm. 2023. V. 5. Art. 100131.
  14. Lumsden N. G., Khambata R. S., Hobbs A. J. C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target // Curr. Pharm. Des. 2010. V. 16. P. 4080‒4088.
  15. Luqman A. The orchestra of human bacteriome by hormones // Microb. Pathog. 2023. P. 106125.
  16. Ovcharova M. A., Geraskina O. V., Danilova N. D., Botchkova E. A., Mart’yanov S.V., Feofanov A. V., Plakunov V. K., Gannesen A. V. Atrial natriuretic peptide affects skin commensal Staphylococcus epidermidis and Cutibacterium acnes dual-species biofilms // Microorganisms. 2021. V. 9. Art. 552.
  17. Ovcharova M. A., Schelkunov M. I. , Geras’kina O.V., Makarova N. E., Sukhacheva M. V., Mart’yanov S.V., Nevolina E. D., Zhurina M. V., Feofanov A. V., Botchkova E. A., Plakunov V. K., Gannesen A. V. C-type natriuretic peptide acts as a microorganism-activated regulator of the skin commensals Staphylococcus epidermidis and Cutibacterium acnes in dual-species biofilms // Biology. 2023. V. 12. Art. 436.
  18. Potter L. R., Yoder A. R., Flora D. R., Antos L. K., Dickey D. M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications // cGMP: Generators, effectors and therapeutic implications. Handbook of experimental pharmacology / Eds. Schmidt H. H.H.W., Hofmann F., Stasch J. P. V. 191. Berlin, Heidelberg: Springer, 2009. P. 341‒366. https://doi.org/10.1007/978-3-540-68964-5_15
  19. Rosay T., Bazire A., Diaz S., Clamens T., Blier A. S., Mijouin L., Hoffmann B., Sergent J. A., Bouffartigues E., Boireau W., Vieillard J., Hulen C., Dufour A., Harmer N. J., Feuilloley M. G.J. Lesouhaitier O. Pseudomonas aeruginosa expresses a functional human natriuretic peptide receptor ortholog: involvement in biofilm formation // MBio. 2015. V. 6. 4. Art. 10.1128/mbio. 01033-15.
  20. Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics // Nat. Protoc. 2016a. V. 11. P. 2301‒2319.
  21. Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote) omics data // Nat. Methods. 2016b. V. 13. P. 731‒740.
  22. Veron W., Lesouhaitier O., Pennanec X., Rehel K., Leroux P., Orange N., Feuilloley M. G.J. Natriuretic peptides affect Pseudomonas aeruginosa and specifically modify lipopolysaccharide biosynthesis // FEBS J. 2007. V. 274. P. 5852‒5864.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the protein profiles of planktonic cultures depending on the cultivation time. A, B - control samples without the addition of the hormone CNP; C, D - samples with the addition of the hormone CNP. A, C - proteins in reduced quantities in 72-h planktonic cultures compared to 24-h cultures; B, D ‒ proteins in increased quantities in 72-h planktonic cultures compared to 24-h cultures. 1 - cluster of putative Zn-dependent dehydrogenases and PhnB-like proteins; 2 - cluster of protein synthesis: ribosomal protein S9 and translation initiation factor IF-3; 3 - cluster of D-alanyl transporter and ribosomal protein L7/L12; 4 - cluster of protein excretion and, possibly, quorum sensing; 5 - cluster of lipid (triglyceride) metabolism; 6 - cluster of folate biosynthesis proteins. 7 – cluster of cyclophilin-like proteins of the MRA-NP family.

Download (53KB)
3. Fig. 2. Changes in the protein profiles of S. epidermidis biofilms depending on the cultivation time. A, B – control samples without the addition of the CNP hormone; C, D – samples with the addition of the CNP hormone. A, C – proteins in reduced quantities in 72-h biofilms compared to 24-h biofilms; B, D ‒ proteins in increased quantities in 72-h biofilms compared to 24-h. 1 – protein excretion cluster; 2 – 3,4-dihydroxy-2-butanone-4-phosphate synthase/GTP cyclohydrolase II and guanosine monophosphate reductase cluster; 3 – protein excretion cluster.

Download (40KB)
4. Fig. 3. Changes in the protein composition of S. epidermidis biofilms compared to planktonic cultures after 24 h of cultivation. A, B – control samples; C, D – samples in the presence of CNP. A, B – proteins in reduced amounts in biofilms compared to planktonic cultures; B, D – proteins in increased amounts in biofilms compared to planktonic cultures. 1 – cluster of protein and ribosome synthesis; 2 – cluster of threonine and arginine synthesis; 3 – cluster of TCA cycle proteins; 4 – cluster of antioxidant protection proteins; 5 – cluster of threonine, serine and glycine metabolism; 6 – proteins of the cell wall and division; 7 – cluster of proteins of purine and secondary metabolite synthesis; 8 – cluster of TCA cycle proteins; 9 – cluster of nitrate metabolism proteins.

Download (53KB)
5. Fig. 4. Changes in the protein composition of S. epidermidis biofilms compared to planktonic cultures after 72 h of cultivation. A, B – control samples; C, D – samples in the presence of CNP. A, B – proteins in reduced amounts in biofilms compared to planktonic cultures; B, D – proteins in increased amounts in biofilms compared to planktonic cultures. 1 – cluster of 2-oxoisovalerate dehydrogenase E3 and glutamate dehydrogenase; 2 – cluster of 3,4-dihydroxy-2-butanone-4-phosphate synthase/GTP cyclohydrolase II and guanosine monophosphate reductase; 3 – cluster of quorum-sensing proteins based on phenol-soluble modulins; 4 – purine synthesis through folate; 5 – cluster of thiamine synthesis proteins; 6 – cluster of glycerolipid metabolism. 7 – cluster of TCA cycle proteins; 8 – cluster of nitrate metabolism proteins.

Download (53KB)
6. Fig. 5. Schematic diagram illustrating the effects of CNP on the protein composition of S. epidermidis planktonic cultures and biofilms, as well as the differences in protein profiles between planktonic cultures and staphylococcal biofilms.

Download (142KB)
7. Additional materials
Download (122KB)

Copyright (c) 2024 Russian Academy of Sciences