Bioleaching of copper-zinc concentrate at different temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The goal of this work was to study the process of bioleaching of arsenic-containing polymetallic concentrate containing 16.0% Cu, 5.3% Zn and 1.7% As, under different conditions. The dependence of the leaching of non-ferrous metals on temperature (45 and 55°C) and the use of CO2 and molasses bioreactors as carbon sources for the microbial population, as well as differences in the composition of microbial populations formed in different conditions were studied. Increasing temperatures led to the increase leaching of both copper and zinc. However, at a higher temperature (55°C), the use of additional carbon sources significantly affected the extraction of metals, while at 45°C, the extraction of metals did not differ significantly between different experimental variants. A study of the microbial populations of bioreactors showed that both temperature changes and additional carbon sources influenced the microbial populations that formed during the bioleaching process. When using carbon dioxide at 45°C, the total number of microbial cells was 1.4 times higher than in other variants, and at 55°C, it was 8 times higher. In addition, changes in the relationships between microorganisms in microbial populations were observed. At 45°C, microbial populations were dominated by iron-oxidizing heterotrophic archaea of the genus Ferroplasma, heterotrophic archaea of the genus Cuniculiplasma, sulfur-oxidizing autotrophic bacteria of the genus Acidithiobacillus, mixotrophic iron- and sulfur-oxidizing bacteria of the genus Sulfobacillus. At 55°C, the microbial populations were dominated by bacteria of the genus Sulfobacillus and iron-oxidizing bacteria of the genus Leptospirillum. The use of carbon dioxide led to the dominance of bacteria of the genus Sulfobacillus: the proportion of 16S rRNA gene fragment sequences of this genus was 99.9%.

Full Text

Restricted Access

About the authors

A. G. Bulaev

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

A. V. Artykova

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

Yu. A. Elkina

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

A. V. Kolosov

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

A. V. Nechaeva

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

A. V. Beletski

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

V. V. Kadnikov

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

V. S. Melamud

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

A. V. Mardanov

FRC “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: bulaev.inmi@yandex.ru
Russian Federation, Moscow, 119071

References

  1. Булаев А. Г. Биоокисление пирротина умеренно-термофильными ацидофильными микроорганизмами // Микробиология. 2020. Т. 89. С. 511–521.
  2. Bulaev A. G. Pyrrhotite biooxidation by moderately thermophilic acidophilic microorganisms // Microbiology (Moscow). 2020. V. 89. P. 510–519.
  3. Васильева А. А., Бодуэн А. Я. Минералогические особенности и способы переработки медных цинксодержащих концентратов // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 3. С. 61–72.
  4. Головачева Р. С., Голышина О. В., Каравайко Г. И., Дорофеев А. Г., Пивоварова Т. А., Черных Н. А. Новая железоокисляющая бактерия Leptospirillum thermoferrooxidans sp. nov. // Микробиология. 1992. Т. 61. С. 1056‒1065.
  5. Golovacheva R. S., Golyshina O. V., Karavaiko G. I., Doro feev A. G., Pivovarova T. A., Chernykh N. A. A new iron oxidizing bacterium Leptospirillum thermoferrooxidans sp. nov. // Microbiology (Moscow). 1992. V. 61. P. 744‒750.
  6. Елкина Ю. А., Мельникова Е. А., Меламуд В. С., Булаев А. Г. Биовыщелачивание теннантита и энаргита умеренно-термофильными ацидофильными микроорганизмами // Микробиология. 2020. Т. 89. С. 419‒431.
  7. Elkina Y. A., Melnikova E. A., Melamud V. S., Bulaev A. G. Bioleaching of enargite and tennantite by moderately thermophilic acidophilic microorganisms // Microbiology (Moscow). 2020. V. 89. P. 413–424.
  8. Елкина Ю. А., Меламуд В. С., Булаев А. Г. Биовыщелачивание медно-цинкового концентрата с высоким содержанием мышьяка // Микробиология. 2021. Т. 90. С. 90‒99.
  9. Elkina Y. A., Melamud V. S., Bulaev A. G. Bioleaching of a copper-zinc concentrate with high arsenic content // Microbiology (Moscow). 2021. V. 90. P. 78–86.
  10. Belyi A. V., Tupikina O. V. Biooxidation of gold ores in Russia and Kazakhstan // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 191–208.
  11. Bulaev A., Boduen A. Carbon sources as a factor determining the activity of microbial oxidation of sulfide concentrate at elevated temperature // Minerals. 2022. V. 12. Art. 110.
  12. Bulaev A., Kadnikov V., Elkina Y., Beletsky A., Melamud V., Ravin N., Mardanov A. Shifts in the microbial populations of bioleach reactors are determined by carbon sources and temperature // Biology. 2023. V. 12. Art. 1411.
  13. Bulaev A., Melamud V., Boduen A. Bioleaching of non-ferrous metals from arsenic-bearing sulfide concentrate // Solid State Phenom. 2020. V. 299. P. 1064–1068.
  14. Bulaev A., Elkina Yu., Melnikova E., Melamud V. Effect of sodium chloride on copper bioleaching from sulfide minerals and concentrates // SGEM. 2019. V. 19. Is. 1.3. P. 799–804.
  15. Diaz J. A., Serrano J., Leiva E. Bioleaching of arsenic-bearing copper ores // Minerals. 2018. V. 8. Art. 215.
  16. Dopson M., Okibe N. Biomining microorganisms: diversity and modus operandi // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 89–110.
  17. Edgar RC. Search and clustering orders of magnitude faster than BLAST // Bioinform. 2010. V. 26. P. 2460‒2461. https://doi.org/10.1093/bioinformatics/btq461
  18. Elkina Y., Nechaeva A., Artykova A., Kolosoff A., Bugubaeva A., Melamud V., Mardanov A., Bulaev A. Continuous bioleaching of arsenic-containing copper-zinc concentrate and shift of microbial population under various conditions // Minerals. 2022.V. 12. Art. 592.
  19. Filippou D., St-Germain P., Grammatikopoulos T. Recovery of metal values from copper-arsenic minerals and other related resources // Miner. Proc. Extr. Metall. Rev. 2007. V. 28. P. 247–298.
  20. Frey B., Rime T., Phillips M., Stierli B., Hajdas I., Widmer F., Hartmann M. Microbial diversity in European alpine permafrost and active layers // FEMS Microbiol. Ecol. 2016. V. 92. Art. fiw018. https://doi.org/10.1093/femsec/fiw018
  21. Hedrich S., Joulian C., Graupner T., Schippers A., Guézennec A.-G. Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching // Hydrometallurgy. 2018. V. 179. P. 125–131.
  22. Gericke M., Neale J. W., van Staden P. J. A Mintek perspective of the past 25 years in minerals bioleaching // J. S. Afr. Inst. Min. Metall. 2009. V. 109. P. 567–585.
  23. Gericke M., Neale J. W., Määttä P. Biomining in Finland: commercial application of heap and tank bioleaching technologies for nickel recovery // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 209–228.
  24. Hallberg K. B., Lindström E. B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile // Microbiology (Reading). 1994. V. 140. P. 3451‒3456.
  25. Johnson D. B., Roberto F. F. Evolution and current status of mineral bioprocessing technologies // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 1–13.
  26. Jyothi N., Sudha K. N., Natarajan K. A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides // Int. J. Miner. Process. 1989. V. 27. P. 189–203.
  27. Kondo S., Hayashi K., Phann I., Okibe N. Bioleaching of tennantite concentrate: influence of microbial community and solution redox potential // Front. Microbiol. 2024. V. 14. Art. 1339549.
  28. Magoc T., Salzberg S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies // Bioinform. 2011. V. 27. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
  29. Mahmoud A., Cezac P., Hoadley A. F.A., Contaminea F., D’Hugues P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors // Int. Biodeterior. Biodegr. 2017. V. 119. P. 118–146.
  30. Masaki Y., Hirajima T., Sasaki K., Miki H., Okibe N. Microbiological redox potential control to improve the efficiency of chalcopyrite bioleaching // Geomicrobiol. J. 2018. V. 3. P. 648–656.
  31. Morin D. H.R., d’Hugues P. Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application // Biomining / Eds. Rawlings D. E., Johnson D. B. Berlin: Springer, 2007. P. 35–55.
  32. Munoz J. A., Blazquez M. L., Gonzalez F., Ballester A., Acevedo F., Gentina J. C., Gonzalez P. Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms // Hydrometallurgy. 2006. V. 84. P. 175–186.
  33. Nakazawa H., Fujisawa H., Sato H . Effect of activated carbon on the bioleaching of chalcopyrite concentrate // Int. J. Mineral Proc. 1998. V. 55. P. 87–94.
  34. Okibe N., Hayashi K., Oyama K., Shimada K., Aoki Y., Suwa T., Hirajima T. Bioleaching of enargite/pyrite-rich “dirty” concentrate and arsenic immobilization // Minerals. 2022. V. 12. Art. 449.
  35. Oyama K., Shimada K., Ishibashi J., Sasaki K., Miki H., Okibe N. Catalytic mechanism of activated carbon-assisted bioleaching of enargite concentrate // Hydrometallurgy. 2020. V. 196. Art. 105417.
  36. Roberto F. F., Arévalo Lara H. Heap bioleaching of an enargite-dominant ore body// Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 177–190.
  37. Rodriguez Y., Ballester A., Blazquez M. L., Gonzalez F., Munoz J. A. New information on the chalcopyrite bioleaching mechanism at low and high temperature // Hydrometallurgy. 2003a. V. 71. P. 47–56.
  38. Rodriguez Y., Ballester A., Blazquez M. L., Gonzalez F., Munoz J. A. New information on the sphalerite bioleaching mechanism at low and high temperature // Hydrometallurgy. 2003b. V. 71. P. 57–66.
  39. Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics // PeerJ. 2016. V. 4. Art. e2584. https://doi.org/10.7717/peerj.2584
  40. van Niekerk J. A., van Buuren C. B. , Olivier J. W. Bioprocessing of refractory gold ores: the BIOX, MesoTHERM, and ASTER processes // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 67–88.
  41. Vera Véliz M., Videla Leiva A., Martínez Bellange P. Copper bioleaching operations in Chile: towards new challenges and developments // Biomining Technologies / Eds. Johnson D. B., Bryan C. G., Schlömann M., Roberto F. F. Cham: Springer, 2023. P. 163–176.
  42. Watling H. R. The bioleaching of sulphide minerals with emphasis on copper sulphides – a review // Hydrometallurgy. V. 2006. V. 84. P . 81–108.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Results of the analysis of the mineral composition of the concentrate using the X-ray phase method (DRON-2.0 diffractometer (“Burevestnik”, Russia), Cu-Kα); Cpp – chalcopyrite, Q – quartz, Py – pyrite, Sp – sphalerite, Tn – tennantite.

Download (24KB)

Copyright (c) 2024 Russian Academy of Sciences