Formation of biologically active compounds by Siberian Cordyceps militaris (L.) Fr. strains
- Authors: Antipova T.V.1,2, Zhelifonova V.P.1, Baskunov B.P.1, Litovka Y.A.3,4, Patrusheva М.М.3,4, Keshelava V.B.5, Mikhaylov E.S.6,7, Chistiakov I.N.8, Pavlov I.N.3,4
-
Affiliations:
- FRC Pushchino Centre for Biological Research, Russian Academy of Sciences
- All-Russian Institute of Plant Protection
- V.N. Sukachev Institute of Forest, FRC KSC, Siberian Branch, Russian Academy of Sciences
- Reshetnev Siberian State University of Science and Technology
- Institute for Biological Instrumentation of the Russian Academy of Sciences
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- RosBioTech University at Pushchino
- ООО “Pushchino Biotechnologies”
- Issue: Vol 93, No 6 (2024)
- Pages: 785-796
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655060
- DOI: https://doi.org/10.31857/S0026365624060099
- ID: 655060
Cite item
Abstract
Fungal strains isolated in the Krasnoyarsk Territory from dead caterpillars of the Siberian silkworm Dendrolimus sibiricus Tschetverikov, found in the litter and crown of Abies sibirica Ledeb., based on morphological and genetic methods, were assigned to the species Cordyceps militaris (L.) Fr. The strains are highly active producers of bioactive compounds such as polysaccharides (PS), adenosine and cordysinin B. Cordysinin B was first discovered in the species C. militaris. It was found that the production of PS was more influenced by the method of growing mushrooms than by the carbon substrate. The highest production of PS (6.0‒6.7 g/l) and nucleosides (390 mg/l) of C. militaris 11-5 was observed during submerged cultivation on sucrose using aminopeptide. When studying the bio synthesis of PS during the growth of the fungus, it was found that the synthesized PS are consumed by the culture when the concentration of the carbon substrate in the environment decreases and, apparently, s erve as reserve sources of carbon.
Keywords
Full Text

About the authors
T. V. Antipova
FRC Pushchino Centre for Biological Research, Russian Academy of Sciences; All-Russian Institute of Plant Protection
Author for correspondence.
Email: tatantip@rambler.ru
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, Pushchino, 142290; Pushkin, 196608, Saint-PetersburgV. P. Zhelifonova
FRC Pushchino Centre for Biological Research, Russian Academy of Sciences
Email: tatantip@rambler.ru
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, Pushchino, 142290B. P. Baskunov
FRC Pushchino Centre for Biological Research, Russian Academy of Sciences
Email: tatantip@rambler.ru
G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, Pushchino, 142290Y. A. Litovka
V.N. Sukachev Institute of Forest, FRC KSC, Siberian Branch, Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology
Email: tatantip@rambler.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660037
М. М. Patrusheva
V.N. Sukachev Institute of Forest, FRC KSC, Siberian Branch, Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology
Email: tatantip@rambler.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660037
V. B. Keshelava
Institute for Biological Instrumentation of the Russian Academy of Sciences
Email: tatantip@rambler.ru
Russian Federation, Pushchino, 142290
E. S. Mikhaylov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; RosBioTech University at Pushchino
Email: tatantip@rambler.ru
Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Fundamental Biotechnology Department, RosBioTech University at Pushchino
Russian Federation, Pushchino, 142290; Pushchino, 142290I. N. Chistiakov
ООО “Pushchino Biotechnologies”
Email: tatantip@rambler.ru
Russian Federation, Pushchino, 142290
I. N. Pavlov
V.N. Sukachev Institute of Forest, FRC KSC, Siberian Branch, Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology
Email: tatantip@rambler.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660037
References
- Евлахова А. А. Энтомопатогенные грибы. Л.: Наука, 1974. 260 с.
- Огарков Б. Н., Огарков О. Б., Огаркова Г. Р., Самусенок Л. В. Грибы рода Cordyceps (Fr.) Link em. Kabayasi et Mains из экосистем Южного Байкала как продуценты высоких концентраций иммуномодулятора кордицепина // Известия Иркутского государственного университета. Серия: Биология. Экология. 2012. Т. 5. № 2. С. 75–80.
- Перт С. Д. Основы культивирования микроорганизмов и клеток. М.: Мир, 1978. 331 c.
- Ashraf S. A., Elkhalifa A. E.O., Siddiqui A. J., Patel M., Awadelkareem A. M., Snoussi, M., Ashraf M. S., Adnan M., Hadi S. Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential // Molecules. 2020. V. 25. Art. 2735.
- Chen X., Wu J. Y., Gui X. T. Production and characterization of exopolysaccharides in mycelial culture of Cordyceps sinensis fungus Cs-HK1 with different carbon sources // Chin. J. Chem. Eng. 2016. V. 24. P. 158–162.
- Chen X., Zhang Y., Ma W., Zhu Y., Wu X., Wang Zh . Effects of Cordyceps militaris polysaccharide on egg production, egg quality and caecal microbiota of layer hens // J. World Poult. Res. 2020. V. 10. P. 41‒51.
- Cui J. D. Biotechnological production and applications of Cordyceps militaris , a valued traditional Chinese medicine // Crit. Rev. Biotechnol. 2015. V. 35. P. 475‒484.
- Das G., Shin H. S., Leyva-Gómez G., Prado-Audelo M.L.D., Cortes H., Singh Y. D., Panda M. K., Mishra A. P., Nigam M., Saklani S., Chaturi P. K., Martorell M., Cruz-Martins N., Sharma V., Garg N., Sharma R., Patra J. K. Cordyceps spp.: a review on its immune-stimulatory and other biological potentials // Front. Pharmacol. 2021. V. 8. Art. 602364.
- Gessi S., Merighi S., Borea P. A. Targeting adenosine receptors to prevent inflammatory skin diseases // Experim. Dermatol. 2014. V. 23. P. 553–554.
- Jędrejko K. J., Lazur J., Muszyńska B . Cordyceps militaris : an overview of its chemical constituents in relation to biological activity // Foods. 2021. V. 10. Art. 2634.
- Jędrejko K., Kała K., Sułkowska-Ziaja K., Krakowska A., Zięba P., Marzec K., Szewczyk A., Sękara A., Pytko-Polończyk J., Muszyńska B. Cordyceps militaris ‒ fruiting bodies, mycelium, and supplements: valuable component of daily diet // Antioxidants (Basel). 2022. V. 11. Art. 1861.
- Jiapeng T., Yiting L., Li Z. Optimization of fermentation conditions and purification of cordycepin from Cordyceps militaris // Prep. Biochem. Biotechnol. 2014. V. 44. P. 90‒106.
- Kang C., Wen T. C., Kang J. C., Meng Z. B., Li G. R., Hyde K. D. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture // Sci. World J. 2014. V. 2014. Art. 510627.
- Kim S. W., Hwang H. J., Xu C. P., Na Y. S., Song S. K., Yun J. W. Influence of nutritional conditions on the mycelial growth and exopolysaccharide production in Paecilomyces sinclairii / / Lett. Appl. Microbiol. 2002. V. 34. P. 389‒393.
- Kitakaze M., Hori M. Adenosine therapy: a new approach to chronic heart failure // Expert Opin. Investig. Drugs. 2000. V. 9. P. 2519–2535.
- Kontogiannatos D., Koutrotsios G., Xekalaki S., Zervakis G. I. Biomass and сordycepin production by the medicinal mushroom Cordyceps militaris – a review of various aspects and recent trends towards the exploitation of a valuable fungus // J. Fungi (Basel). 2021. V. 7. Art. 986.
- Kryukov V.Yu., Tomilova O. G., Yaroslavtseva O. N., Wen T. C., Kryukova N. A., Polenogova O. V., Tokarev Y. S., Glupov V. V. Temperature adaptations of Cordyceps militaris , impact of host thermal biology and immunity on mycosis development // Fungal Ecol. 2018. V. 35. P. 98–107.
- Liu Y., Wang J., Wang W., Zhang H., Zhang X., Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis // Evid. Based Complement. Alternat. Med. 2015. V. 2015. Art. 575063.
- Mao X. B., Eksriwong T., Chauvatcharin S., Zhong J. J. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris // Process Biochem. 2005. V. 40. P. 1667–1672.
- Miao M., Yu W. Q., Li Y., Sun Y. L.., Guo S. D. Structural elucidation and activities of Cordyceps militaris ‒ derived polysaccharides: a review // Front. Nutrit. 2022. V. 9. Art. 898674.
- Nakav S., Chaimovitz C., Sufaro Y., Lewis E. C., Shaked G., Czeiger D., Zlotnik M., Douvdevani A. Anti-inflammatory preconditioning by agonists of adenosine A1 receptor // PLoS One. 2008. V. 3. Art. e2107.
- Nirenberg H. I. Recent advances in the taxonomy of Fusarium // Stud. Mycol. 1990. V. 32. P. 91‒101.
- Ohizumi Y., Kawada M, Kamada M., Nakajima A., Kajima K., Uozumi N., Hara Y., Guo Y., Ishibashi M. Isolation of adenosine and cordysinin B from Anredera cordifolia that stimulates CRE-mediated transcription in PC12 cells // Planta Med. Int. Open. 2021. V. 8. P. e19–e24.
- Olatunji O. J., Tang J., Tola A., Auberon F., Oluwaniyi O, Ouyang Z. The genus Cordyceps : an extensive review of its traditional uses, phytochemistry and pharmacology // Fitoterapia. 2018. V. 129. P. 293‒316.
- Qu S. L., Li S. S., Li D., Zhao P. J. Metabolites and their bioactivities from the genus Cordyceps // Microorganisms. 2022. V. 10. Art. 1489.
- Radchenkova N., Tomova A., Kambourova M. . Biosynthesis of an exopolysaccharide produced by Brevibacillus thermoruber 438 // Biotechnol. Biotechnol. Equip. 2011. V. 25. P. 77–79.
- Roe J. H. The determination of sugar in blood and spinal fluid with anthrone reagent // J. Biolog. Chem. 1955. V. 212. P. 335‒343.
- Shih I. L., Tsai K-L., Hsieh Ch., Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris // Biochem. Engineer. J. 2007. V. 33. P. 193‒201.
- Thuy D. T.P., Anh T. T.N., Thuy N. T.T., Intaparn P., Tapingkae T., Mai N. T. Simple and efficient method for the detection and quantification of cordycepin content in Cordyceps / / Chiang Mai J. Sci. 2021. V. 48. P. 420‒428.
- Wang C. C., Wu J. Y. , Chang C. Y., Yu S. T., Liu Y. C. Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation // J. Biosci. Bioeng. 2019. V. 127. P. 499–505.
- Wu J. Y., Leung P. H., Wang W. Q., Xu C. P. Mycelial fermentation characteristics an d anti-fatigue activities of a Chinese caterpillar fungus, Ophiocordyceps sinensis strain Cs-HK1 (Ascomycetes) // Int. J. Med. Mushrooms. 2014. V. 16. P. 105–114.
- Yang D., Yaguchi T., Yamamoto H., Nishizaki T . Intracellularly transported adenosine induces apoptosis in HuH-7 human hepatoma cells by downregulating c-FLIP expression causing caspase-3/-8 activation // Biochem. Pharmacol. 2007. V. 73. P. 1665–1675.
- Yang Sh., Yang X., Zhang H . Extracellular polysaccharide biosynthesis in Cordyceps // Crit. Rev. Microbiol. 2020. V. 46. P. 359‒380.
- Yang M. L., Kuo P. C., Hwang T. L., Wu T. S. Anti-inflammatory principles from Cordyceps sinensis // J. Nat. Prod. 2011. V. 74. P. 1996–2000.
- Zhang J., Wen Ch., Duan Y., Zhang H., Ma H . Advance in Cordyceps militaris (Linn) Link polysaccharides: isolation, structure, and bioactivities: a review // Int.J. Biol. Macromol. 2019. V. 132. P. 906‒914.
Supplementary files
