Phylogenetic structure of bacterioplankton in water bodies of the Kuibyshev Reservoir basin during the period of mass development of cyanobacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phylogenetic structure of the bacterioplankton of the Usa Bay and the adjacent aquatory of the Kuibyshev Reservoir, as well as three hydrologically connected urban lakes of the Kaban system (Kazan), was analyzed using the results of high-throughput sequencing of the V3‒V4 hypervariable region of the 16S ribosomal RNA gene. In the studied water objects, mass cyanobacterial development was observed, dominated by members of the Aphanizomenon / Dolichospermum and Cyanobium phylogenetic lines and the genus Planktothrix. Alpha- and betaproteobacteria dominated in the heterotrophic bacterioplankton of all stations. A significant proportion of its composition was made up of mixotrophic bacteria with the rhodopsin type of photosynthesis (for example, Ca. Fonsibacter, Ca. Nanopelagicus, Ca. Planctophila). A characteristic feature of the studied samples is a high proportion of bacteria of PVC superphylum, especially Planctomycetota. An assessment was made of the dependence of the composition and structure of bacterioplankton on the composition of the dominant cyanobacterial complexes, and groups of heterotrophic bacteria associated with various cyanobacteria were identified. The most numerous group is formed around Aphanizomenon Dolichospermum Microcystis and mainly consists of bacteria that are part of the phycosphere of colonial cyanobacteria, as well as representatives of the PVC superphylum. Two small groups are formed around Limnothrix redekei and Cyanobium rubescens and consist of typical planktonic bacteria, belonging mainly to the order Flavobacteriales and the family Nanopelagicaceae.

Full Text

Restricted Access

About the authors

M. V. Umanskaya

Samara Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: mvumansk67@gmail.com

Institute of Ecology of the Volga Basin of the Russian Academy of Sciences

Russian Federation, Togliatti, 445003

M. Yu. Gorbunov

Samara Federal Research Center of the Russian Academy of Sciences

Email: mvumansk67@gmail.com

Institute of Ecology of the Volga Basin of the Russian Academy of Sciences

Russian Federation, Togliatti, 445003

References

  1. Бариева Ф. Ф., Халиулина Л. Ю., Мингазова Н. М., Фитопланктон городских водоемов и водотоков // Экология города Казани / Казань: Изд-во “Фэн” АН РТ, 2005. С. 236‒247.
  2. Биоразнообразие и типология карстовых озер Среднего Поволжья. Под ред. Мингазовой Н. М. Казань: Казанский гос. ун-т, 2009. 225 с.
  3. Горохова О. Г. Фитопланктон озерной системы Кабан в 2011 году // Георесурсы. 2012. Т. 7. № 49. С. 24‒28.
  4. Корнева Л. Г. Фитопланктон водохранилищ Волги. Кострома: Костромской печатный дом, 2015. 284 с.
  5. Паутова В. Н., Номоконова В. И. Продуктивность фитопланктона Куйбышевского водохранилища. Тольятти: ИЭВБ РАН, 1994. 188 с.
  6. Куйбышевское водохранилище (научно-информационный справочник). Под ред. Розенберга Г. С., Выхристюк Л. А. Тольятти: ИЭВБ РАН, 2008. 124 с.
  7. Уманская М. В., Горбунов М. Ю., Быкова С. В., Тарасова Н. Г. Разнообразие и трансформация сообщества планктонных пресноводных протистов в эстуарной зоне притока крупного равнинного водохранилища: метабаркодинг гена 18s-рибосомной РНК // Известия РАН. Сер. биол. 2023а. № 4. С. 426‒443.
  8. Umanskaya M. V., Gorbunov M. Y., Bykova S. V., Tarasova N. G. Diversity and transformation of the community of planktonic freshwater protists in the estuarine tributary zone of a large plainland reservoir: metabarcoding of the 18S ribosomal RNA gene // Biol. Bull. 2023a. V. 50. P. 707‒723.
  9. Уманская М. В., Горбунов М. Ю., Краснова Е. С., Тарасо ва Н. Г. Сравнительный анализ структуры сообщества цианобактерий участка равнинного водохранилища по результатам микроскопического учета и 16S-метабаркодирования // Биосфера. 2023б. Т. 15. С. 246‒260.
  10. Фролова Л. Л., Свердруп А. Э., Маланин С. Ю., Деревенская О. Ю., Хусаинов А. М., Харченко А. М. Метагеном гидробионтов озер Кабан города Казани: анализ видового разнообразия гидробионтов по маркерным генам. Казань: Казанский (Приволжский) федеральный университет, 2019. 218 с.
  11. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation // Microbiol. Rev . 1995. V. 59. P. 143‒169.
  12. Callieri C., Cronberg G., Stockner J. G. Freshwater Picocyanobacteria : single cells, microcolonies and colonial forms // Ecology of Cyanobacteria II: Their diversity in space and time / Ed. Whitton B. A. Dordrecht: Springer Netherlands, 2012. P. 229‒269.
  13. Chiriac M. C., Haber M., Salcher M. M. Adaptive genetic traits in pelagic freshwater microbes // Environ. Microbiol . 2023. V. 25. P. 606‒641.
  14. Driscoll C. B., Otten T. G., Brown N. M., Dreher T. W. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture // Stand. Genomic Sci. 2017. V. 12. https://doi.org/10.1186%2Fs40793-017-0224-8
  15. Edgar R. C. Search and clustering orders of magnitude faster than BLAST // Bioinform. 2010. V. 26. P. 2460‒2461.
  16. Eiler A., Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes // Environ. Mircobiol . 2004. V. 6. P. 1228–1243.
  17. Fuerst J. A. The planctomycetes: emerging models for microbial ecology, evolution and cell biology // Microbiology (Reading). 1995. V. 141. P. 1493‒1506.
  18. Galperin M. Y. Dark matter in a deep-sea vent and in human mouth // Environ. Mircobiol. 2007. V. 9. P. 2385‒2391.
  19. Griese M., Lange C., Soppa J. Ploidy in cyanobacteria // FEMS Microbiol. Lett. 2011. V. 323. P. 124‒131.
  20. Herlemann D. P., Labrenz M., Jürgens K., Bertilsson S., Waniek J. J., Andersson A. F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea // ISME J. 2011. V. 5. P. 1571‒1579.
  21. Huisman J., Codd G. A., Paerl H. W., Ibelings B. W., Verspagen J. M., Visser P. M. Cyanobacterial blooms // Nat. Rev. Microbiol. 2018. V. 16. P. 471‒483.
  22. Karlusich J. J.P., Pelletier E., Zinge L., Lombard F., Zingone A., Colin S., Gasol J. M., Dorrell R. G., Henry N., Scalco E., Acinas S. G., Wincker P., de Vargas C., Bowler C. A robust approach to estimate relative phytoplankton cell abundances from metagenomes // Mol. Ecol. Resour. 2023. V. 23. P. 16‒40.
  23. Kasalický V., Zeng Y., Piwosz K., Šimek K., Kratochvilová H., Koblížek M . Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans // Appl. Environ. Microbiol. 2018. V. 84. Art. e02116-17.
  24. Legendre P., Gallagher E. D. Ecologically meaningful transformations for ordination of species data // Oecologia. 2001. V. 129. P. 271‒280.
  25. Mondav R., Bertilsson S., Buck M., Langenheder S., Lindström E. S., Garcia S. L. Streamlined and abundant bacterioplankton thrive in functional cohorts // mSystems. 2020. V. 5. Art. e00316-20.
  26. Newton R. J., Jones S. E., Eiler A., McMahon K.D., Bertilsson S . A guide to the natural history of freshwater lake bacteria // MMBR. 2011. V. 75. P. 14‒49.
  27. Pitt A., Schmidt J., Koll U., Hahn M. W. Rhodoluna limnophila sp. nov., a bacterium with 1.4 Mbp genome size isolated from freshwater habitats located in Salzburg, Austria // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 3946‒3954.
  28. Rappé M. S., Giovannoni S. J. The uncultured microbial majority // Annu. Rev. Microbiol. 2003. V. 57. P. 369‒394.
  29. Reynolds C. S., Huszar V., Kruk C., Naselli-Flores L., Melo S. Towards a functional classification of the freshwater phytoplankton // J. Plankt. Res. 2002. V. 24. P. 417‒428.
  30. Salcher M. M., Neuenschwander S. M., Posch T., Pernthaler J . The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign // ISME J. 2015. V. 9. P. 2442–2453.
  31. Schirrmeister B. E., Dalquen D. A., Anisimova M. Bagheri H. C., Gene copy number variation and its significance in cyanobacterial phylogeny // BMC Microbiol. 2012. V. 12. Art. 177.
  32. Zwart G., Crump B. C., Kamst-van Agterveld M. P., Hagen F., Han S. K. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers // Aquat. Microb. Ecol. 2002. V. 28. P. 141‒155.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Taxonomic structure of individual samples: a – proportion of the number of detected OTUs belonging to different phyla; b – proportion of sequences belonging to different phyla.

Download (115KB)
3. Fig. 2. Cluster analysis of differences in the structure of bacterial communities of the studied samples using the UPGA method; a ‒ Bray-Curtis difference measures between the vectors of OTU abundance proportions; b ‒ Hellinger distances.

Download (31KB)
4. Fig. 3. Structure of the main cyanobacterial OTUs in the studied samples. “Other” are OTUs that did not reach 1% of the total number of cyanobacteria in any of the samples.

Download (69KB)
5. Fig. 4. Taxonomic structure of heterotrophic bacterioplankton in individual samples at the class level: the proportion of sequences belonging to different taxa.

Download (95KB)
6. Fig. 5. Results of two-way cluster analysis of dominant heterotrophic bacterial OTUs by abundance proportion using chord distance as a similarity measure. On the right is the consensus taxonomic affiliation of OTUs based on the ARB-Silva and GTDB databases. Three-letter designations of phyla/classes: ACI – Acidobacteria; ACT – Actinobacteria; BAC – Bacteroidota; BDE – Bdellovibrionota = Oligoflexota; CFL – Chloroflexota; KAP – Kapabacterota; PAT – Patescibacteria; PLA – Planctomycetota; a-, b-, and g-PRO – Proteobacteria; VAM – Vampirovibryonota; VER – Verrucomicrobiota.

Download (175KB)
7. Fig. 6. Non-metric scaling of dominant OTUs by Bray-Curtis dissimilarity values. Dark gray ovals show visually distinguishable OTU groupings.

Download (47KB)

Copyright (c) 2024 Russian Academy of Sciences