Determination of the gut microbiota composition of common noctule by bacteriological analysis and high-throughput sequencing of 16S rRNA
- Authors: Popov I.V.1,2, Donnik I.M.3, Lipilkina T.A.1, Berezinskaia I.S.4, Tkacheva E.V.1, Lukbanova E.A.1, Aleshukina A.V.4, Tikhmeneva I.A.1, Derezina T.N.1, Evsyukov A.P.1, Tverdokhlebova T.I.4, Ermakov A.M.1
-
Affiliations:
- Don State Technical University
- Sirius University of Science and Technology
- National research center “Kurchatov institute”
- Rostov Research Institute of Microbiology and Parasitology
- Issue: Vol 93, No 6 (2024)
- Pages: 864-869
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655066
- DOI: https://doi.org/10.31857/S0026365624060159
- ID: 655066
Cite item
Abstract
Bats (Chiroptera) are the second most diverse order of mammals after rodents, which ensures their key role in the functioning of ecosystems. The microbiota of bats, especially the bacterial one, is poorly studied, which does not allow an accurate assessment of the role of bats in global microbial ecology. In this study, we determined the composition and diversity of the intestinal microbiota of the common noctule (Nyctalus noctula) in Rostov-on-Don using bacteriological analysis and metagenomic sequencing of the V3-V4 16S rRNA gene. As a result, we found that microbial diversity determined using metagenomic sequencing was statistically significantly higher (p < 0.001) compared to the bacteriological method. However, mass spectrometric identification of bacterial isolates made it possible to determine their species, while the sensitivity of the metagenomic sequencing protocol used is limited to reliable identification of bacteria to genus rank. Also, bacteria of the genera Enterococcus, Citrobacter, Enterobacter, Lactococcus, and Latilactobacillus were the most prevalent in the intestinal microbiota of the common noctule. Our study provides the first data on the composition of the cultivated and uncultivated microbiota of the rufous noctule, which is a fundamental step in the study of the microbiota of synanthropic bats.
Keywords
Full Text

About the authors
I. V. Popov
Don State Technical University; Sirius University of Science and Technology
Author for correspondence.
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003; Sochi, 354340
I. M. Donnik
National research center “Kurchatov institute”
Email: doc.igor.popov@gmail.com
Russian Federation, Moscow, 123182
T. A. Lipilkina
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
I. S. Berezinskaia
Rostov Research Institute of Microbiology and Parasitology
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344000
E. V. Tkacheva
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
E. A. Lukbanova
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
A. V. Aleshukina
Rostov Research Institute of Microbiology and Parasitology
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344000
I. A. Tikhmeneva
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
T. N. Derezina
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
A. P. Evsyukov
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
T. I. Tverdokhlebova
Rostov Research Institute of Microbiology and Parasitology
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344000
A. M. Ermakov
Don State Technical University
Email: doc.igor.popov@gmail.com
Russian Federation, Rostov-on-Don, 344003
References
- Athanasopoulou K., Adamopoulos P. G., Scorilas A. Unveiling the human gastrointestinal tract microbiome: the past, present, and future of metagenomics // Biomedicines. 2023. V. 11. Art. 827.
- Bolyen E., Rideout J. R., Dillon M. R., Bokulich N. A., Abnet C. C., Al-Ghalith G.A., Alexander H., Alm E. J., Arumugam M., Asnicar F., Bai Y., Bisanz J. E., Bittinger K., Brejnrod A., Brislawn C. J., Brown C. T., Callahan B. J., Caraballo-Rodriguez A.M., Chase J., Cope E. K., Da Silva R., Diener C., Dorrestein P. C., Douglas G. M., Durall D. M., Duvallet C., Edwardson C. F., Ernst M., Estaki M., Fouquier J., Gauglitz J. M., Gibbons S. M., Gibson D. L. , Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G. A., Janssen S., Jarmusch A. K., Jiang L., Kaehler B. D., Kang K. B., Keefe C. R., Keim P., Kelley S. T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M. G. I., Lee J., Ley R., Liu Y. X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B. D., McDonald D., McIver L.J., Melnik A. V. , Metcalf J. L., Morgan S. C., Morton J. T., Naimey A. T., Navas-Molina J.A., Nothias L. F., Orchanian S. B., Pearson T., Peoples S. L., Petras D., Preuss M. L., Pruesse E., Rasmussen L. B., Rivers A., Robeson M. S. , Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S. J., Spear J. R., Swafford A. D., Thompson L. R., Torres P. J., Trinh P., Tripathi A., Turnbaugh P. J., Ul-Hasan S., van der Hooft J. J.J., Vargas F., Vazquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K. C., Williamson C. H.D., Willis A. D. , Xu Z. Z., Zaneveld J. R., Zhang Y., Zhu Q., Knight R., Caporaso J. G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2 // Nature Biotechnol. 2019. V. 37. P. 852–857.
- Callahan B. J., McMurdie P.J., Rosen M. J., Han A. W., Johnson A. J., Holmes S. P. DADA2: High-resolution sample inference from Illumina amplicon data // Nature Methods. 2016. V. 13. P. 581–583.
- Caron A., Bourgarel M., Cappelle J., Liégeois F., De Nys H. M. , Roger F. Ebola virus maintenance: if not (only) bats, what else? // Viruses. 2018. V. 10. Art. 549.
- Devnath P., Karah N., Graham J. P., Rose E. S., Asaduzzaman M. Evidence of antimicrobial resistance in bats and its planetary health impact for surveillance of zoonotic spillover events: a scoping review // Int. J. Environ. Res. Public Health. 2022. V. 20. Art. 243.
- Donnik I., Popov I. V., Sereda S., Popov I. V., Chikindas M., Ermakov A. Coronavirus infections of animals: future risks to humans // Biol. Bull. 2021. V. 48. P. 26–37.
- Durazzi F., Sala C., Castellani G., Manfreda G., Remondini D., De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota // Sci. Rep. 2021. V. 11. Art. 3030.
- Foti M., Grasso R., Fisichella V., Mascetti A., Colnaghi M., Grasso M., Spena M. T. Antimicrobial resistance in physiological and potentially pathogenic bacteria isolated in southern italian bats // Animals. 2023. V. 13. Art. 966.
- Froidevaux J. S., Toshkova N., Barbaro L., Benítez-López A., Kerbiriou C., Le Viol I., Pacifici M., Santini L., Stawski C., Russo D. A species-level trait dataset of bats in Europe and beyond // Sci. Data. 2023. V. 10. Art. 253.
- Gazal S., Sharma N., Gazal S., Tikoo M., Shikha D., Badroo G. A., Rashid M., Lee S.-J. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic // Pathogens. 2022. V. 11. Art. 1419.
- Han H.-J., Wen H.-l., Zhou C.-M., Chen F.-F., Luo L.-M., Liu J.-W., Yu X.-J. Bats as reservoirs of severe emerging infectious diseases // Virus Res. 2015. V. 205. P. 1–6.
- Hung Y. M., Lyu W. N., Tsai M. L., Liu C. L., Lai L. C., Tsai M. H., Chuang E. Y. To compare the performance of prokaryotic taxonomy classifiers using curated 16S full-length rRNA sequences // Comput. Biol. Med. 2022. V. 145. Art. 105416.
- Katiraei S., Anvar Y., Hoving L., Berbée J. F., van Harmelen V., Willems van Dijk K. Evaluation of full-length versus V4-region 16S rRNA sequencing for phylogenetic analysis of mouse intestinal microbiota after a dietary intervention // Curr. Microbiol. 2022. V. 79. Art. 276.
- Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F. O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies // Nucleic Acids Res. 2013. V. 41. P. e1-e1.
- Kruskop S. V. Diversity aspects in bats: genetics, morphology, community structure // Diversity 2021. V. 13. Art. 424. https://doi.org/10.3390/d13090424
- Li K. S., Lau S. K., Woo P. C. Bats ‒ the magnificent virus player: SARS, MERS, COVID-19 and beyond // Viruses. 2023. V. 15. Art. 2342.
- Lindecke O., Currie S. E., Fasel N. J., Fritze M., Kravchenko K., de Assis C. K., Lehnert L. S., Röleke M., Voigt-Heucke S.L., Voigt C. C. Common noctule Nyctalus noctula (Schreber, 1774) // Handbook of the Mammals of Europe / Eds. K. Hackländer, F.E. Zachos. Springer, 2020. P. 1–25.
- Ludwig L., Muraoka J., Bonacorsi C., Donofrio F. Diversity of fungi obtained from bats captured in urban forest fragments in Sinop, Mato Grosso, Brazil // Braz. J. Biol. 2021. V. 83. Art. e247993.
- Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucleic Acids Res. 2012. V. 41. P. D590–D596.
- Russo D., Billington G., Bontadina F., Dekker J., Dietz M., Gazaryan S., Jones G., Meschede A., Rebelo H., Reiter G. Identifying key research objectives to make European forests greener for bats // Front. Ecol. Evolut. 2016. V. 4. Art. 87.
- Wagner J., Coupland P., Browne H. P., Lawley T. D., Francis S. C., Parkhill J. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification // BMC Microbiol. 2016. V. 16. P. 1–17.
- Yang B., Wang Y., Qian P. Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis // BMC Bioinform. 2016. V. 17. P. 135.
- Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W., Glöckner F. O. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks // Nucleic Acids Res. 2014. V. 42. P. D643–D648.
- Zhang T., Li H., Ma S., Cao J., Liao H., Huang Q., Chen W. The newest Oxford Nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling // Appl. Environ. Microbiol. 2023. V . 89. Art. e00605–00623.
Supplementary files
