Degradation of cinnamic acid by the rhizosphere strain Achromobacter insolitus LCu2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Achromobacter insolitus LCu2 strain, isolated from the roots of alfalfa (Medicago sativa L.), utilized cinnamic acid, as well as its methoxy derivatives ‒ vanillic and ferulic acids ‒ as the only carbon source. Weak growth was observed on m-coumaric acid, but not on o- and p-coumaric acids. Growth on cinnamic acid was slow and diauxic. The loss of substrate from the cultivation medium was 53%, the destructive efficiency was 30 μg/mg of raw biomass for 14 days. Despite the bactericidal effect of cinnamic acid, the A. insolitus LCu2 culture remained viable for a long time. Genomic analysis revealed two gene clusters, hca and mhp, responsible for dihydroxylation of the phenyl ring (hcaA1A2CDB) and its subsequent cleavage to central metabolic products (mhpACDE), as well as a transcriptional regulator (hcaR) and a putative transporter (hcaT). A putative biochemical pathway for cinnamic acid degradation by A. insolitus strain LCu2 was predicted using genomic data.

Full Text

Restricted Access

About the authors

E. V. Kryuchkova

FRCenter “Saratov Scientific Center RAS”

Author for correspondence.
Email: kryu-lena@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, 410049, Saratov

E. S. Morozova

St. Petersburg State University

Email: kryu-lena@yandex.ru
Russian Federation, 199034, St. Petersburg

V. S. Grinev

FRCenter “Saratov Scientific Center RAS”; Saratov National Research State University named after N. G. Chernyshevsky

Email: kryu-lena@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, 410049, Saratov; 410012, Saratov

G. L. Burygin

FRCenter “Saratov Scientific Center RAS”; Saratov National Research State University named after N. G. Chernyshevsky

Email: kryu-lena@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, 410049, Saratov; 410012, Saratov

N. E. Gogoleva

Kazan (Volga Region) Federal University; Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Email: kryu-lena@yandex.ru
Russian Federation, 420008, Kazan; 460000, Orenburg

Yu. V. Gogolev

Kazan (Volga Region) Federal University; Kazan Scientific Center of the Russian Academy of Sciences

Email: kryu-lena@yandex.ru

Kazan Institute of Biochemistry and Biophysics

Russian Federation, 420008, Kazan; 420008, Kazan

References

  1. Анохина Т. О., Есикова Т. З., Гафаров А. Б., Поливцева В. Н., Баскунов Б. П., Соляникова И. П. Альтернативный путь метаболизма нафталина у штамма Rhodococcus opacus 3D, включающий образование орто-фталевой и производных коричной кислоты // Биохимия. 2020. T. 85. P. 412‒427.
  2. Anokhina T. O., Esikova T. Z., Gafarov A. B., Polivtseva V. N., Baskunov B. P., Solyanikova I. P. Alternative naphthalene metabolic pathway includes formation of ortho-phthalic acid and cinnamic acid derivatives in the Rhodococcus opacus strain 3D // Biochemistry (Moscow). 2020. V. 85. P. 355‒368.
  3. Ермакова И. Т., Шушкова Т. В., Леонтьевский А. А. Микробная деструкция органофосфонатов почвенными бактериями // Микробиология. 2008. Т. 77. С. 689‒695.
  4. Ermakova I. T., Shushkova T. V., Leont’evskii A. A. Microbial degradation of organophosphonates by soil bacteria // Microbiology (Moscow). 2008. V. 77. P. 615‒620.
  5. Andreoni V., Bestetti G. Comparative analysis of different Pseudomonas strains that degrade cinnamic acid // Appl. Environ. Microbiol. 1986. V. 52. P. 930‒934.
  6. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank // Nucl. Acids Res. 2000. V. 28. P. 235‒242. https://doi.org/10.1093/nar/28.1.235
  7. Bugg T. D.H. Overproduction, purification and properties of 2,3-dihydroxyphenylpropionate 1,2-dioxygenase from Escherichia coli // Biochim. Biophys. Acta. Protein Struct. Mol. Enzymol. 1993. V. 1202. P. 258‒264.
  8. Chamkha M., Labat M., Patel B. K., Garcia J. L. Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 2049‒2054.
  9. Chen J., Li W., Wang M., Zhu G., Liu D., Sun F., Zhang X. C. Crystal structure and mutagenic analysis of GDOsp, a gentisate 1, 2-dioxygenase from Silicibacter pomeroyi // Protein Sci. 2008. V. 17. P. 1362‒1373.
  10. Croteau R., Kutchan T. M., Lewis N. G. Natural products (secondary metabolites) // Biochemistry and molecular biology of plants / Eds. B. Buchanan, W. Gruissem, R. Jones. Ch. 24. 2000. P. 1250‒1319.
  11. Díaz E., Ferrández A., García J.L. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12 // J. Bacteriol. 1998. V. 180. P. 2915‒2923.
  12. Fairley D. J., Wang G., Rensing C., Pepper I. L., Larkin M. J. Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera // Appl. Microbiol. Biotechnol. 2006. V. 73. P. 691‒695.
  13. Ferraroni M., Matera I., Steimer L., Bürger S., Scozzafava A., Stolz A., Briganti F. Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: a step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases // J. Struct. Biol. 2012. V. 177. P. 431‒438.
  14. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T. L. NCBI BLAST: a better web interface // Nucl. Acids Res. 2008. V. 36. Suppl. 2. P. W5‒W9.
  15. Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes // Nucl. Acids Res. 2000. V. 28. P. 27‒30.
  16. Kefeli V. I., Kalevitch M. V., Borsari B. Phenolic cycle in plants and environment // J. Cell Mol. Biol. 2003. V. 2. P. 13‒18.
  17. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547‒1549.
  18. Malheiro J. F., Maillard J. Y., Borges F., Simões M. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control // Int. Biodeterior. Biodegrad. 2019. V. 141. P. 71‒78.
  19. Mandal S. M., Chakraborty D., Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses // Plant Signal. Behav. 2010. V. 5. P. 359‒368.
  20. Mendel S., Arndt A., Bugg T. D.H. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) // Biochem. 2004. V. 43. P. 13390‒13396.
  21. Monisha T. R., Ismailsab M., Masarbo R., Nayak A. S., Karegoudar T. B. Degradation of cinnamic acid by a newly isolated bacterium Stenotrophomonas sp. TRMK2 // 3 Biotech. 2018. V. 8. P. 1‒8.
  22. Perez-Pantoja D., De la Iglesia R., Pieper D. H., González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134 // FEMS Microbiol. Rev. 2008. V. 32. P. 736‒794.
  23. Rajkumari J., Borkotoky S., Murali A., Suchiang K., Mohanty S. K., Busi S. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 // Biotechnol. Lett. 2018. V. 40. P. 1087‒1100.
  24. Salvador V. H., Lima R. B., dos Santos W. D., Soares A. R., Böhm P. A.F., Marchiosi R., Ferrarese-Filho O. Cinnamic acid increases lignin production and inhibits soybean root growth // PLoS One. 2013. V. 8. Art. e69105.
  25. Siqueira J. O., Nair M. G., Hammerschmidt R., Safir G. R., Putnam A. R. Significance of phenolic compounds in plant-soil-microbial systems // Crit. Rev. Plant Sci. 1991. V. 10. P. 63‒121.
  26. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 // Nucl. Acids Res. 2023. V. 51. Iss. D1. P. D523–D531.
  27. Ye S. F., Zhou Y. H., Sun Y., Zou L. Y., Yu J. Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt // Environ. Exp. Bot. 2006. V. 56. P. 255‒262.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biphasic growth curve of A. insolitus LCu2 on 0.5 g/L cinnamic acid. Each point is the mean of three replicates; error bars show the confidence interval for p ≤ 0.05.

Download (21KB)
3. Fig. 2. Viability of bacteria cultured for a month on cinnamic acid: 1, 2 – cultures grown on 0.5 g/l; 3, 4 – on 1.0 g/l cinnamic acid, plated on mineral-synthetic (MS1) and LB media; confidence interval for p ≤ 0.05.

Download (19KB)
4. Fig. 3. UV spectra (a) and HPLC analysis (b) of cinnamic acid before and after cultivation of A. insolitus LCu2. Blue curve – chemical control, red – after cultivation of bacteria.

Download (22KB)
5. Fig. 4. Phytotoxicity of supernatants with cinnamic acid in relation to wheat sprouts of the Saratovskaya 29 variety: a – average root length; b – average stem length; 1 – biological control; 2 – chemical control; 3 – LCu2 culture liquid. Error bars show the confidence interval for p ≤ 0.05; in each variant n = 25; plant age 5 days; cinnamic acid content 1 mg.

Download (18KB)
6. Fig. 5. Structural organization of the gene cluster containing the hca and mhp genes and the putative biochemical pathway of cinnamic acid degradation by A. insolitus LCu2 strain. a: R – gntR (transcription regulator); D – mhpD; hB – hcaB; hp – QEK92583; A2 – hcaA2; A1 – hcaA1; hС – hcaC; hD – hcaD; b: HcaA1A2 – α- and β-subunits of trans/cinnamate dioxygenase; HcaC – ferredoxin; HcaD – ferredoxin reductase; HcaB – 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase; QEK92583 – hypothetical protein – putatively, extradiol dioxygenase; MhpC – 2-hydroxy-6-oxonadienedioate/2-hydroxy-6-oxononatrienedioate hydroxylase; MhpD – 2-keto-4-pentonoate hydratase; MhpE – 4-hydroxy-2-oxovalerate aldolase. Ovals indicate central metabolites.

Download (33KB)
7. Fig. 6. Bioinformatics analysis of the amino acid sequence (QEK92583) from A. insolitus LCu2: a ‒ comparison of amino acid sequence fragments of salicylate 1,2-dioxygenase from P. salicylatoxidans BN12 (AAQ91293.1) and a hypothetical protein of A. insolitus LCu2 (QEK92583). The cupin domain with three histidine residues (His119; His121 and His160) coordinating Fe2+ in the catalytic center (Matera et al., 2008) is marked with blue rectangles and stars and is designated as Motif I and Motif II; b ‒ phylogenetic analysis of proteins with cupin domains using the Maximum-Likelihood method in Mega X (Kumar et al., 2018), bootstrap 1000, sequences aligned in ClustalOmega W with default settings; root – homogentisate 1,2-dioxygenase.

Download (629KB)

Copyright (c) 2024 Russian Academy of Sciences