Long-term survival of Enterococcus faecium under different conditions of cell stabilization and immobilization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lactic acid bacteria (LAB) play an important role in biotechnology and biomedicine. Their most important disadvantage is the rapid death of crops and preparations during storage. Studying ways to increase the survival time of lactic acid bacteria under various conditions is an urgent scientific and applied task and was the goal of this work. The object was the lactic acid bacterium Enterococcus faecium. It has been shown that in aging planktonic cultures, bacteria quickly lose viability (the number of viable cells decreases by 2–4 orders of magnitude in 1 month). The development cycle of the E. faecium population under these conditions ends with the formation of cyst-like resting cells of two types: L-forms and hypometabolic cells. The use of chemical stabilizers, humic substances (typical soil components), and increases the number of surviving cells by 2–3 times. With surface immobilization (adsorption) on organosilanol or inorganic carriers (organosilane, silica), the number of cells surviving under starvation conditions increases by 1.25–3 times. The most effective approach was the immobilization of cells in silanol-humate gels (increasing the number of surviving cells up to 35 times relative to the control). The data obtained reveal the mechanisms and forms of survival of LAB in natural conditions (state of hypometabolism, the presence of specialized forms of dormancy), and can also be used to develop methods for long-term storage of LAB in their biological products.

Full Text

Restricted Access

About the authors

O. A. Galuza

Federal Research Center of Biotechnology RAS; Bavar+ JSC

Author for correspondence.
Email: olesya_galuza@mail.ru

Institute of Microbiology named after. S.N. Vinogradsky

Russian Federation, 119071, Moscow; 127206, Moscow

G. I. El-Registan

Federal Research Center of Biotechnology RAS

Email: olesya_galuza@mail.ru

Institute of Microbiology named after. S.N. Vinogradsky

Russian Federation, 119071, Moscow

T. A. Kanapatski

Federal Research Center of Biotechnology RAS

Email: olesya_galuza@mail.ru

Institute of Microbiology named after. S.N. Vinogradsky

Russian Federation, 119071, Moscow

Yu. A. Nikolaev

Federal Research Center of Biotechnology RAS

Email: olesya_galuza@mail.ru

Institute of Microbiology named after. S.N. Vinogradsky

Russian Federation, 119071, Moscow

References

  1. Брюханов А. Л., Климко А. И., Нетрусов А. И. Антиоксидантные свойства молочнокислых бактерий // Микробиология. 2022. Т. 91. С. 519–536.
  2. Bryukhanov A. L., Klimko A. I., Netrusov A. I. Antioxidant properties of lactic acid bacteria // Microbiology (Moscow). 2022. V. 91. P. 463‒478.
  3. Бухарин О. В., Гинцбург А. Л., Романова Ю. М., Эль-Регистан Г.И. Механизмы выживания бактерий. М.: Медицина, 2005. 367 с.
  4. Голод Н. А., Лойко Н. Г., Мулюкин А. Л., Нейматов А. Л., Воробьева Л. И., Сузина Н. Е., Шаненко Е. Ф., Гальченко В. Ф., Эль-Регистан Г.И. Адаптация молочнокислых бактерий к неблагоприятным для роста условиям // Микробиология. 2009. Т. 78. С. 317–327.
  5. Golod N. A., Loiko N. G., Mulyukin A. L., Gal’chenko V.F., El-Registan G.I., Neiymatov A. L., Vorobjeva L. I., Suzina N. E., Shanenko E. F. Adaptation of lactic acid bacteria to unfavorable growth conditions // Microbiology (Moscow). 2009. V. 78. P. 280‒289.
  6. Иммобилизованные клетки: биокатализаторы и процессы. Под ред. Е.Н. Ефременко. М.: РИОР, 2018. 499 с.
  7. Лойко Н. Г., Краснова М. А., Пичугина Т. В., Гриневич А. И., Ганина В. И., Козлова А. Н., Николаев Ю. А., Гальченко В. Ф., Эль-Регистан Г.И. Изменение диссоциативного спектра популяций молочнокислых бактерий при воздействии антибиотиков // Микробиология. 2014. Т. 83. 284–294.
  8. Loiko N. G., Krasnova M. A., Pichugina T. V., Grinevich A. I., Ganina V. I., Kozlova A. N., Nikolaev Yu.A., Gal’chenko V.F., El’-Registan G.I. Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment // Microbiology (Moscow). 2014. V. 83. P. 195‒204.
  9. Маркелов Д. А., Ницак В. Н., Геращенко И. И. Сравнительное изучение адсорбционной активности медицинских сорбентов // Химико-фармацевтический журнал. 2008. Т. 42. № 7. С. 30–33.
  10. Мулюкин А. Л., Сузина Н. Е., Мельников В. Г., Гальченко В. Ф., Эль-Регистан Г.И. Состояние покоя и фенотипическая вариабельность у Staphylococcus aureus и Corynebacterium pseudodiphtheriticum // Микробиология. 2014. Т. 83. С. 15–27.
  11. Mulyukin A. L., Suzina N. E., Mel’nikov V. G., Gal’chenko V. F., El’-Registan G. I. dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum // Microbiology (Moscow). 2014. V. 83. P. 149–159.
  12. Мулюкин А. Л., Сузина Н. Е., Погорелова А. Ю., Антонюк Л. П., Дуда В. И., Эль-Регистан Г.И. Разнообразие морфотипов покоящихся клеток и условия их образования у Azospirillum brasilense // Микробиология. 2009. Т. 78. № 1. С. 42–52.
  13. Mulyukin A. L., Pogorelova A.Yu., El-Registan G.I., Suzina N. E., Duda V. I., Antonyuk L. P. Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense // Microbiology (Moscow). 2009. V. 78. P. 33 ‒41.
  14. Николаев Ю. А., Борзенков И. А., Демкина Е. В., Лойко Н. Г., Канапацкий Т. А., Перминова И. В., Хрептугова А. Н., Григорьева Н. В., Близнец И. В., Манучарова Н. А., Сорокин В. В., Коваленко М. А., Эль-Регистан Г.И. Новые биокомпозитные материалы, включающие углеводородокисляющие микроорганизмы, и их потенциал для деградации нефтепродуктов // Микробиология. 2021. Т. 90. № 6. С. 692‒705.
  15. Nikovaev Yu.A., Borzenkov I. A., Demkina E. V., Loiko N. G., Kanapatskii T. A., Perminova I. V., Khreptugova A. N., Grigor’eva N.V., Bliznets I. V., Manucharova N. A., Sorokin V. V., Kovalenko M. A., El’-Registan G.I. New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation // Microbiology (Moscow). 2021. V. 90. P. 731–742.
  16. Николаев Ю. А., Демкина Е. В., Перминова И. В., Лойко Н. Г., Борзенков И. А., Иванова А. Е., Константинов А. И., Эль-Регистан Г.И. Роль гуминовых веществ в пролонгировании жизнеспособности клеток углеводородокисляющих бактерий // Микробиология. 2019. Т. 88. С. 725–729.
  17. Nikolaev Y. A., Demkina E. V., Loiko N. G., Borzenkov I. A., Ivanona A. E., El’-Registan G.I., Perminova I. V., Konstantinov A. I. Role of humic compounds in viability prolongation of the cells of hydrocarbon-oxidizing bacteria // Microbiology (Moscow). 2019. V. 88. P. 764‒768.
  18. Николаев Ю. А., Лойко Н. Г., Демкина Е. В., Атрощик Е. А., Константинов А. И., Перминова И. В., Эль-Регистан Г.И. Функциональная активность гуминовых веществ в пролонгировании выживания популяции углеводородокисляющей бактерии Acinetobacter junii // Микробиология. 2020. Т. 89. С. 74‒87.
  19. Nikolaev Y. A., Loiko N. G., Demkina E. V., El’-Registan G.I., Konstantinov A. I., Perminova I. V., Atroshchik E. A. Functional activity of humic substances in survival prolongation of populations of hydrocarbon-oxidizing bacteria Acinetobacter junii // Microbiology (Moscow). 2020. V. 89. P. 74‒85.
  20. Николаев Ю. А., Мулюкин А. Л., Степаненко И. Ю., Эль-Регистан Г.И. Ауторегуляция стрессового ответа микроорганизмов // Микробиология. 2006. Т. 75. № 4. С. 489‒496.
  21. Nikolaev Yu. A., Mulyukin A. L., Stepanenko I. Yu., El’-Registan G. I. Autoregulation of stress response in microorganisms // Microbiology (Moscow). 2006. V. 75. P. 420‒426.
  22. Олескин А. В., Шендеров Б. А., Роговский В. С. Социальность микроорганизмов и взаимоотношения в системе микробиота‒хозяин: роль нейромедиаторов. М.: Изд-во МГУ, 2020. 286 с.
  23. Практикум по микробиологии: Учеб. пособие для студ. высш. учеб. заведений / Под ред. Нетрусова А. И. М.: Издательский центр “Академия”, 2005. 608 с.
  24. Соляникова И. П., Сузина Н. Е., Егозарьян Н. С., Поливцева В. Н., Мулюкин А. Л., Егорова Д. О., Эль-Регистан Г.И., Головлева Л. А. Особенности структурно-функциональных перестроек клеток актинобактерий BN52 при переходе от вегетативного роста в состояние покоя и при прорастании покоящихся форм // Микробиология. 2017. Т. 86. № 4. С. 463–475.
  25. Solyanikova I. P., Suzina N. E., Egozarjan N. S., Polivtseva V. N., Mulyukin A. L., Egorova D. O., El-Registan G.I., Golovleva L. A. Structural and functional rearrangements in the cells of actinobacteria Microbacterium foliorum BN52 during transition from vegetative growth to a dormant state and during germination of dormant forms // Microbiology (Moscow). 2017. V. 86. P. 476‒486.
  26. Эль-Регистан Г.И., Земскова О. В., Галуза О. А., Уланова Р. В., Ильичева Е. А., Ганнесен А. В., Николаев Ю. А. Влияние гормонов и биогенных аминов на рост и выживание Enterococcus durans // Микробиология. 2023. Т. 92. № 4. С. 376–395.
  27. El’-Registan G.I., Zemskova O. V., Galuza O. A., Ulanova R. V., Il’icheva E.A., Gannesen A. V., Nikolaev Yu.A. Effect of hormones and biogenic amines on growth and survival of Enterococcus durans // Microbiology (Moscow). 2023. V. 92. P. 517–533.
  28. Эль-Регистан Г.И., Мулюкин А. Л., Николаев Ю. А., Сузина Н. Е., Гальченко В. Ф., Дуда В. И. Адаптогенные функции внеклеточных ауторегуляторов микроорганизмов // Микробиология. 2006. Т. 75. С. 446‒456.
  29. El-Registan G.I., Mulyukin A. L., Nikolaev Yu.A., Suzina N. E., Gal’chenko V.F., Duda V. I. Adaptogenic functions of extracellular autoregulators of microorganisms // Microbiology (Moscow). 2006. V. 75. P. 380‒389.
  30. Azzaz H. H., Kholif A. E., Murad H. A., Vargas-Bello-Pérez E.A. Newly developed strain of Enterococcus faecium isolated from fresh dairy products to be used as a probiotic in lactating Holstein cows // Front. Vet. Sci. 2022. V. 9. https://doi.org/10.3389/fvets.2022.989606
  31. Balaban N., Merrin I., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch // Science. 2004. V. 305. P. 1622‒1625.
  32. Balaban N. Q., Helaine S., Lewis K., Ackermann M., Aldridge B., Andersson D. I., Brynildsen M. P., Bumann D., Camilli A., Collins J. J. et al. Definitions and guidelines for research on antibiotic persistence // Nat. Rev. Microbiol. 2019. V. 17. P. 441–448.
  33. Condon S. Responses of lactic acid bacteria to oxygen // FEMS Microbiol. Lett. 1987. V. 46. P. 269–280.
  34. Fleischmann S., Robben C., Alter T., Rossmanith P., Mester P. How to evaluate non-growing cells ‒ current strategies for determining antimicrobial resistance of VBNC // Bacteria. Antibiotics. 2021. V. 10. https://doi.org/10.3390/antibiotics/10020115
  35. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaïki L., Lamberret G., Sourice S., Duwat P., Gruss A. Respiration capacity and consequences in Lactococcus lactis // Antonie van Leeuwenhoek. 2002. V. 82. P. 263–269.
  36. Ivshina I. B., Mukhutdinova A. N., Tyumina H. A., Vikhareva H. V., Suzina N. E., El’-Registan G.I., Mulyukin A. L. Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber // Curr. Microbiol. 2015. V. 70. P. 307–314.
  37. Kozubek A., Zarnowski R., Stasiuk M., Gubernator J. Natural amphiphilic phenols as bioactive compounds // Cell. Mol. Biol. Lett. 2001. V. 6. P. 351–355.
  38. Lyte M. Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to brain-communication // PharmaNutrition. 2013. V. 1. P. 35‒39.
  39. Maresca D., Zotta T., Mauriello G. Adaptation to aerobic environment of Lactobacillus johnsonii/gasseri strains // Front. Microbiol. 2018. V. 9. Art. 157. https://doi.org/10.3389/fmicb.2018.00157
  40. Mgomi F. C., Yang Y. R., Cheng G., Yang Z. Q. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms // Biofilm. 2023. V. 5. https://doi.org/10.1016/j.bioflm.2023.100118
  41. Nikolaev Y., Borzenkov I., Demkina E., Loiko N., Kanapatsky T., Perminova I., Volikov A., Khreptugova A., Bliznetc I., Grigoreva N., El-Registan G. Immobilization of cells of hydrocarbon-oxidizing bacteria for petroleum bioremediation using new materials // Int. J. Environ. Res. 2021. V. 15. P. 971–984.
  42. Nikolaev Y. A., Demkina E. V., Borzenkov I. A., Ivanova A. E., Kanapatsky T. A., Konstantinov A. I., Volikov A. B., Perminova I. V., El-Registan G.I. Role of the structure of humic substances in increasing bacterial survival // J. Microbiol. Biotechnol. 2020. V. 5. № 4. https://doi.org/10.23880/OAJMB-16000174
  43. Oleskin A. V., Shenderov B. A. Microbial communication and microbiota-host interactivity. neurophysiological, biotechnological, and biopolitical implications // Nova Science Publishers. 2020. https://doi.org/10.52305/EGCB8622
  44. Oleskin A. V., Zhilenkova O. G., Shenderov B. A., Amerhanova A. M., Kudrin V. S., Klodt P. M. Lactic-acid bacteria supplement fermented dairy products with human behavior-modifying neuroactive compounds // J. Pharm. Nutr. Sci. 2014. V. 4. P. 199–206.
  45. Pious T., Aparna S., Reshmi U., Mubashar M., Sadiq P. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast CFU enumeration and single colony isolation from diverse samples // Biotechnol. Rep. (Amst.). 2015. V. 8. P. 45–55.
  46. Radosavljević M., Lević S., Pejin J., Mojović L., Nedović V. Encapsulation technology of lactic acid bacteria in food fermentation // Lactic acid bacteria in food biotechnology: innovations and functional aspects / Eds. Ray R. C., Paramithiotis S., de Carvalho Azevedo V. A., Montet D. Amsterdam: Elsevier, 2022. V. 17. P. 319–347.
  47. Salminen S., Wright V., Ouwehand A. Lactic acid bacteria: microbiological and functional aspects // Brazil. J. Pharm. Sci. 2004. V. 42. P. 473–474.
  48. Sampietro D., Belizán M. E. M., Apud G. R., Juarez J. H., Vattuone M., Catalan C. Alkylresorcinols: chemical properties, methods of analysis and potential uses in food, industry and plant protection // Natural antioxidants and biocides from wild medicinal plants / Eds. Cespedes C. L. CAB International, 2013. P. 148–166.
  49. Spores VII: Papers Presented at the Seventh International Spore Conference Madison, Wisconsin, 5‒8 October 1977 / Eds. Chambliss G., Vary J. C. Washington: Amer. Soc. Microbiol., 1978. 354 p.
  50. Volikov A., Ponomarenko S., Gutsche A., Nirschl H., Hatfield K., Perminova I. Targeted design of waterbased humic substances-silsesquioxane soft materials for nature-inspired remedial // RSC Adv. 2016. V. 6. P. 48222–48230.
  51. Wainwright J., Hobbs G., Nakouti I. Persister cells: formation, resuscitation and combative therapies // Arch. Microbiol. 2021. V. 203. P. 5899–5906.
  52. Zur J., Wojcieszynska D., Guzik U. Metabolic responses of bacterial cells to immobilization // Molecules. 2016. V. 21. P. 958–973.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of changes in the number of viable E. faecium cells in a population grown in skim milk, when stored in static conditions with access to atmospheric oxygen for 1 month. The numbers indicate the phases of death: 1 – stationary, 2 – rapid death, 3 – plateau.

Download (14KB)
3. Fig. 2. The proportion (% of control) of surviving E. faecium cells stored for 1 month in the control (without adding HS) and experimental variants with the addition of HS at a concentration of 0.5 g/l (column marked with number 1) and 0.15 g/l (column marked with number 2).

Download (41KB)
4. Fig. 3. The proportion (% of control) of surviving E. faecium cells stored for 1 month in the control (without adding HS) and experimental variants with the addition of HS at a concentration of 0.15 g/l and during storage with limited access (column marked with number 1) and without limiting access to atmospheric oxygen (column marked with number 2).

Download (45KB)
5. Fig. 4. E. faecium cells adsorbed on the surfaces of gel particles or in the gel: a – Enterosgel; b – Polysorb; c – SGG based on Paohumus humate. 1 – Particles of polymethylsiloxane polyhydrate; 2 – particles of finely dispersed silica (Polysorb); 3 – adsorbed E. faecium cells. Fluorescence microscopy.

Download (36KB)
6. Fig. 5. The proportion (% of control) of surviving cells of the E. faecium population grown in milk during storage for a month in the control (without the addition of stabilizers) and experimental variants with the addition of stabilizers.

Download (27KB)
7. Fig. 6. The proportion (% of control) of surviving E. faecium cells grown in milk during storage for 1 month in the control (planktonic culture) and experimental variants in the SHG.

Download (25KB)
8. Fig. 7. The proportion (% of control) of surviving cells of the E. faecium population grown during heterophase cultivation with the addition of sorbents and subsequent storage for 1 month under different conditions of oxygen access: with limited oxygen access (solid filled columns) and with oxygen access (hatched columns).

Download (36KB)
9. Fig. 8. Electron micrographs of thin sections of E. faecium cells grown in milk to the stationary growth phase (a, b) and stored for 6 months in a static mode (c-g). Designations: VC – ultrastructure of vegetative cells (a, b); type I CPC with a thickened cell wall (CL); type II CPC with a thick multilayer CL and dense cytoplasm, compacted nucleoid (CN); L-ф – L-form cells without CL (c); CPM – cytoplasmic membrane (b, d, g).

Download (69KB)
10. Fig. 9. Colonies of E. faecium dissociants in a population obtained from cells grown in skim milk for 24 h (a) and stored for 6 months (b). 1 – Colonies of the dominant S-morphotype up to 2 mm in size; 2 – colonies of the Sb-morphotype 2–3 mm in size; 3 – colonies of the Sm-morphotype less than 1 mm in size, translucent. Light microscopy.

Download (15KB)

Copyright (c) 2024 Russian Academy of Sciences