The role of carbon dioxide in the regulation of bacterial adaptive proliferation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The adaptive proliferation of bacteria or cell division in the absence of an exogenous organic substrate is controlled by density-dependent mechanisms with the participation of AHL- and AI-2-dependent quorum sensing systems. Along with the signaling molecules of these bacterial communication systems, bacterial metabolites that are permanently released during microbial metabolism, for example, CO2, can also participate in regulation and can serve as biomarkers of cell density. It has been established that carbon dioxide is necessary for the adaptive proliferation launch, and the increased content of atmospheric CO2 causes a premature stop to this process. Thus, CO2 is able to regulate the adaptive reactions of bacteria, including, probably, being one of the signals involved in the initiation and termination of the process of adaptive proliferation. It has been shown that CO2 in the form of the bicarbonate ion HCO3- can activate the cAMP-dependent signaling cascade and is also included in the bacterial cell mass.

Full Text

Restricted Access

About the authors

O. E. Petrova

Federal Research Center KazSC RAS

Email: poe60@mail.ru

Kazan Institute of Biochemistry and Biophysics

Russian Federation, 420111, Kazan

O. I. Parfirova

Federal Research Center KazSC RAS

Email: poe60@mail.ru

Kazan Institute of Biochemistry and Biophysics

Russian Federation, 420111, Kazan

V. N. Vorob’ev

Federal Research Center KazSC RAS; Kazan Federal University

Email: poe60@mail.ru

Kazan Institute of Biochemistry and Biophysics, Institute of Fundamental Medicine and Biology

Russian Federation, 420111, Kazan; 420008, Kazan

V. Yu. Gorshkov

Federal Research Center KazSC RAS; Kazan Federal University

Author for correspondence.
Email: poe60@mail.ru

Kazan Institute of Biochemistry and Biophysics, Institute of Fundamental Medicine and Biology

Russian Federation, 420111, Kazan; 420008, Kazan

References

  1. Мясник М. Н. Динамика клеточной популяции бактерий при исчезающее малых количествах питательных веществ в среде // Тез. докладов II Всесоюзного совещания “Управляемый синтез и биофизика популяций”. Красноярск, 1969. С. 287.
  2. Braun A., Spona-Friedl M., Avramov M., Elsner M., Baltar F., Reinthaler T., Herndl G., Griebler C. Reviews and syntheses: heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling // Biogeosci. 2021. V. 18. P. 3689‒3700.
  3. Chen Y., Cann M. J., Litvin T. N., Iourgenko V., Sinclair M. L., Levin L. R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor // Science. 2000. V. 289. Р. 625‒628.
  4. Dehority B. A. Carbon dioxide requirement of various species of rumen bacteria // J. Bacteriol. 1971. V. 105. P. 70‒76.
  5. Gorshkov V., Petrova O., Gogoleva N., Gogolev Y. Cell-to-cell communication in the populations of enterobacterium Erwinia carotovora ssp. atroseptica SCRI1043 during adaptation to stress conditions // FEMS Immunol. Med. Microbiol. 2010. V. 59. P. 378‒385.
  6. Jo B. H., Kim I. G., Seo J. H., Kang D. G., Cha H. J. Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration // Appl. Environ. Microbiol. 2013. V. 79. Р. 6697‒6705.
  7. Kalia D., Merey G., Nakayama S., Zheng Y., Zhou J., Luo Y., Guo M., Roembke B., Sintim H. O. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis // Chem. Soc. Rev. 2013. V. 42. P. 305‒341.
  8. Merlin C., Masters M., McAteer S., Coulson A. Why is carbonic anhydrase essential to Escherichia coli? //J. Bacteriol. 2003. V. 185. P. 6415‒6424.
  9. Petrova O., Gorshkov V., Daminova A., Ageeva M., Moleleki L. N., Gogolev Y. Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population density // Res. Microbiol. 2014. V. 165. Р. 119‒127.
  10. Petrova O., Parfirova O., Gogoleva N., Vorob’ev V., Gogolev Y., Gorshkov V. The role of intercellular signaling in the regulation of bacterial adaptive proliferation // Int. J. Mol. Sci. 2023. V. 24. Art. 7266.
  11. Smith K. S., Ferry J. G. Prokaryotic carbonic anhydrases // FEMS Microbiol. Rev. 2000. V. 24. P. 335‒366.
  12. Sorokin C. Inhibition of cell division by carbon dioxide // Nature. 1962. V. 194. P. 496‒497.
  13. Steegborn C., Litvin T. N., Levin L. R., Buck J., Wu H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment // Nat. Struct. Mol. Biol. 2005. V. 12. P. 32‒37.
  14. Stretton S., Goodman A. E. Carbon dioxide as a regulator of gene expression in microorganisms // Antonie Van Leeuwenhoek. 1998. V. 73. P. 79‒85.
  15. Striednig B.; Hilbi H. Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual // Trends Microbiol. 2022. V. 3. P. 379–389.
  16. Stulke J., Kruger L. Cyclic di-AMP signaling in bacteria // Annu. Rev. Microbiol. 2020. V. 74. P. 159‒179.
  17. Williams P., Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules // Curr. Opin.Microbiol. 2009. V. 12. P. 182–191.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of CFU numbers in P. atrosepticum SCRI1043 cultures grown on LB medium (black lines) or cultured on carbon-free AB medium (gray lines) in the presence of atmospheric CO2 (squares) or in its absence (triangles).

Download (29KB)
3. Fig. 2. Dynamics of the CFU number in P. atrosepticum SCRI1043 cultures growing on LB nutrient medium (a) or cultivated on carbon-free AB medium (b) in the presence of different concentrations of CO2: 1 – atm CO2; 2 – 5% CO2; 3 – 10% CO2; 4 – 20% CO2.

Download (29KB)
4. Fig. 3. Expression of carbonic anhydrase (a) and adenylate cyclase (b) genes in P. atrosepticum SCRI1043 grown on LB medium (black bars) or cultured on carbon-free AB medium (gray bars) in the presence of atmospheric CO2. The expression level of the target genes was determined relative to the normalizing factor calculated for the housekeeping genes ffh, tuf, recA of P. atrosepticum. The values ​​presented are the average values ​​of five biological replicates. Asterisks (*) indicate significant differences (two-tailed Mann‒Whitney test, p < 0.05) between the variants marked in brackets.

Download (26KB)

Copyright (c) 2024 Russian Academy of Sciences