Effect of environmental factors on recombinant activity of root nodule bacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The legume-rhizobia symbiosis is a unique natural phenomenon, which supplies the plant with the necessary mineral nitrogen via fixation of atmospheric dinitrogen. This interaction involves two partners: the legume plant and root nodule bacteria (rhizobia). In the wild, members of the Fabaceae family enter into symbiosis with a polymorphic group of rhizobia specific to them; the mechanism and reasons for the formation of heterogeneity of rhizobia are currently the subject of active research. In the present work, a Rhizobium leguminosarum strain strictly specific to Phaseolus vulgaris L. was used to show that within 30 days upon its introduction into soil, genetic rearrangements occurred in the cells, as was revealed by changes in the pattern of its genetic profile. It was also found that recombination activity of thecells was also affected by the root exudates produced during seed germination, which may indicate involvement of the plant in the formation of polymorphism of its microsymbionts. These findings suggest interpretation of this process not as a spontaneous event, but rather as the event controlled by the plant.

Full Text

Restricted Access

About the authors

An. Kh. Baymiev

Ufa Research Center, Russian Academy of Sciences

Author for correspondence.
Email: baymiev@anrb.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

I. S. Koryakov

Ufa Research Center, Russian Academy of Sciences

Email: baymiev@anrb.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

Е. S. Akimova

Ufa Research Center, Russian Academy of Sciences

Email: baymiev@anrb.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

А. А. Vladimirova

Ufa Research Center, Russian Academy of Sciences

Email: baymiev@anrb.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

Al. Kh. Baymiev

Ufa Research Center, Russian Academy of Sciences

Email: baymiev@anrb.ru

Institute of Biochemistry and Genetics

Russian Federation, Ufa

References

  1. Баймиев А. Х., Акимова Е. С., Коряков И. С., Владимирова А. А., Баймиев А. Х. Зависимость состава клубеньковых бактерий лядвенца рогатого (Lotus corniculatus) от стадии вегетации растения-хозяина // Микробиология. 2022. Т. 91. С. 586‒596.
  2. Baymiev An. Kh., Akimova E. S., Koryakov I. S., Vladimirova A. A., Baymiev Al. Kh. The composition of Lotus corniculatus root nodule bacteria depending on the host plant vegetation stage // Microbiology (Moscow). 2022. V. 91. P. 553‒562.
  3. Баймиев Ан.Х., Птицын К. Г., Баймиев Ал. Х. Влияние интродукции караганы древовидной на состав ее клубеньковых бактерий // Микробиология. 2010. Т. 79. С. 123–128.
  4. Baymiev An.K., Ptitsyn K. G., Baimiev Al. K. Influence of the introduction of Caragana arborescenson the composition of its root nodule bacteria // Microbiology (Moscow). 2010. V. 79. P. 115‒120.
  5. Проворов Н. А., Воробьев Н. И. Эволюционная генетика клубеньковых бактерий: молекулярные и популяционные аспекты // Генетика. 2000. Т. 36. С. 1573–1587.
  6. Provorov N. A., Vorob’ev N. I. Evolutionary genetics of nodule bacteria: molecular and population aspects // Russ. J. Genet. 2000. V. 36. P. 1323‒1335.
  7. Проворов Н. А., Воробьев Н. И. Генетические основы эволюции растительно-микробного симбиоза. СПб.: Информ-Навигатор, 2012. 400 с.
  8. Andam C. P., Mondo S. J., Parker M. A. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts // Appl. Environ. Microbiol. 2007. V. 73. P. 4684‒4690.
  9. Barcellos F. G., Menna P., Batista J. S., Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah Soil // Appl. Environ. Microbiol. 2007. V. 73. P. 2635‒2643.
  10. Fischer H. M. Genetic regulation of nitrogen fixation in rhizobia // Microbiol. Rev. 1994. V. 58. P. 352–386.
  11. Jordan D. C. Genus I. Rhizobium Frank // Bergey’s Manual of Systematic Bacteriology / Eds. Krieg N. R., Holt J. G. Baltimore: Williams and Wilkins, 1984. V. 1. Р. 235–242.
  12. Ling J., Wang H., Wu P., Li T., Tang Y., Naseer N., Zheng H., Masson-Boivin C., Zhong Z., Zhu J. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P.13875‒13880.
  13. Martinez E., Romero D., Palacios R. The Rhizobium genome // Crit. Rev Plant Sci. 1990. V. 9. P. 59‒93.
  14. Minamisawa K., NakatsukaY., Isawa T. Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSα and RSβ // FEMS Microbiol. Ecol. 1999. V. 29. P. 171‒178.
  15. Nandasena K. G., O’Hara G.W., Tiwari R. P., Howieson J. G. Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant // Appl. Environ. Microbiol. 2006. V. 72. P. 7365–7367.
  16. Rogel M. A., Ormeño-Orrillo E., Romero E. M. Symbiovars in rhizobia reflect bacterial adaptation to legumes // Syst. Appl. Microbiol. 2011. V. 34. P. 96‒104.
  17. Romero D., Martinez-Salazar J., Girard L., Brom S., Dávilla G., Palacios R., Flores M., Rodríguez C. Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42 // J. Bacteriol. 1995. V. 177. P. 973‒980.
  18. Romero D., Palacios R. Gene amplification and genomic plasticity in prokaryotes // Annu. Rev. Genet. 1997. V. 31. P. 91‒111.
  19. Williams J. G., Kubelik A. R., Livak K.J, Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers // Nucl. Acids Res. 1990. V. 18. P. 6531‒6535.
  20. Zhao C. T., Wang E. T., Chen W. F., Chen W. X. Diverse genomic species and evidences of symbioticgene lateral transfer detectedamong the rhizobia associated with Astragalus species grown in the temperate regions of China // FEMS Microbiol. Lett. 2008. V. 286. P. 263‒273.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phoregram of RAPD profiles of rhizobia isolates obtained from common bean nodules using AFK-1 primer: A ‒ profiles of isolates obtained from nodules of plants grown in soil inoculated with R. leguminosarum strains Pvu2 and St4 after 30-day incubation; B ‒ profiles of isolates obtained from nodules of plants grown in sterile sand immediately after inoculation with R. leguminosarum strains Pvu2 and St4; B ‒ profile of strain Pvu2; G ‒ profile of strain St4; M ‒ 100 bp marker.

Download (119KB)
3. Fig. 2. Phoregram of RAPD profiles of rhizobia isolates obtained from common bean nodules inoculated with bacteria after 30-day incubation with root secretions of seedlings using the AFK-1 primer. A – profile of the original strain Pvu2.

Download (115KB)
4. Fig. 3. Foregram of RAPD profiles of rhizobia isolates isolated from common bean nodules using AFK-1 primer. A ‒ profiles of isolates obtained from nodules of a plant grown in soil inoculated with R. leguminosarum strain Pvu2 after 30-day incubation; B ‒ profiles of isolates obtained from nodules of a plant grown in the root system of common pea in soil inoculated with R. leguminosarum strain Pvu2; B ‒ profile of strain Pvu2; G ‒ profile of strain St4; M ‒ 100 bp marker.

Download (90KB)

Copyright (c) 2024 Russian Academy of Sciences