Structure of the regulatory region of nitrile hydratase genes in Rhodococcus rhodochrous М8, a biocatalyst for production of acrylic heteropolymers
- Authors: Grechishnikova Е.G.1, Shemyakina А.О.1, Novikov А.D.1, Kalinina Т.I.1, Lavrov К.V.1, Yanenko А.S.1
-
Affiliations:
- NRC “Kurchatov Institute”
- Issue: Vol 93, No 4 (2024)
- Pages: 432-437
- Section: SHORT COMMUNICATIONS
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655091
- DOI: https://doi.org/10.31857/S0026365624040059
- ID: 655091
Cite item
Abstract
Rhodococcus rhodochrous strain М8 is a platform for development of the biotechnologies for biocatalytic production of acrylic monomers, the raw material for synthesis of acrylic heteropolymers. A genetic system for investigation of the cobalt-dependent transcription of nitrile hydratase genes in this strain was constructed, based the reporter gene of the metal-independent acylamidase from Rhodococcus qingshengii TA37. The cobalt-regulated promoter was shown to be located at a significant distance (~0.5 kb) from nitrile hydratase genes. Excision of the region between the promoter and the nitrile hydratase genes decreased significantly both the promoter activity and the degree of regulation by cobalt. Our results improve the possibilities for rational design of regulated expression cassettes using the promoter of nitrile hydratase genes in Rhodococcus, and for further development of biocatalysts based on these bacteria.
Full Text

About the authors
Е. G. Grechishnikova
NRC “Kurchatov Institute”
Author for correspondence.
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowА. О. Shemyakina
NRC “Kurchatov Institute”
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowА. D. Novikov
NRC “Kurchatov Institute”
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowТ. I. Kalinina
NRC “Kurchatov Institute”
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowК. V. Lavrov
NRC “Kurchatov Institute”
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowА. S. Yanenko
NRC “Kurchatov Institute”
Email: sel-sanguine@yandex.ru
Kurchatov Genomic Center
Russian Federation, MoscowReferences
- Busenlehner L. S., Pennella M. A., Giedroc D. P. The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance // FEMS Microbiol. Rev. 2003. V. 27. P. 131‒143.
- Coppens L., Wicke L., Lavigne R. SAPPHIRE. CNN: Implementation of dRNA-seq-driven, species-specific promoter prediction using convolutional neural networks // Comput. Struct. Biotechnol. J. 2022. V. 20. P. 4969‒4974.
- Dandanell G., Valentin-Hansen P., Erik Løve Larsen J., Hammer K. Long-range cooperativity between gene regulatory sequences in a prokaryote // Nature. 1987. V. 325. P. 823‒826.
- Grechishnikova E. G., Shemyakina A. O., Novikov A. D., Lavrov K. V., Yanenko A. S. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform // Crit. Rev. Biotechnol. 2023. V. 43. P. 835‒850.
- Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G. InterProScan 5: genome-scale protein function classification // Bioinformatics. 2014. V. 30. P. 1236‒1240.
- Komeda H., Kobayashi M., Shimizu S. Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1 // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 4267‒4272.
- Lavrov K., Zalunin I., Kotlova E., Yanenko A. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides // Biochemistry (Moscow). 2010. V. 75. P. 1006‒1013.
- Lavrov K., Larikova G., Yanenko A. Novel biocatalytic process of N-substituted acrylamide synthesis // Appl. Biochem. Microbiol. 2013. V. 49. P. 702‒705.
- Lavrov K., Yanenko A. Cloning of new acylamidase gene from Rhodococcus erythropolis and its expression in Escherichia coli // Russ. J. Genet. 2013. V. 49. P. 1078‒1081.
- Lavrov K., Novikov A., Ryabchenko L., Yanenko A. Expression of acylamidase gene in Rhodococcus erythropolis strains // Russ. J. Genet. 2014. V. 50. P. 1003‒1007.
- Lavrov K., Grechishnikova E., Shemyakina A., Novikov A., Kalinina T., Epremyan A., Glinskii S., Minasyan R., Voronin S., Yanenko A. Optimization of the expression of nitrilase from Alcaligenes denitrificans in Rhodococcus rhodochrous to improve the efficiency of biocatalytic synthesis of ammonium acrylate // Appl. Biochem. Microbiol. 2019. V. 55. P. 861‒869.
- Lavrov K. V., Shemyakina A. O., Grechishnikova E. G., Novikov A. D., Derbikov D. D., Kalinina T. I., Yanenko A. S. New cblA gene participates in regulation of cobalt-dependent transcription of nitrile hydratase genes in Rhodococcus rhodochrous // Res. Microbiol. 2018. V. 169. P. 227‒236.
- Markham N. R., Zuker M. UNAFold: software for nucleic acid folding and hybridization // Methods Mol. Biol. 2008. V. 453. P. 3‒31.
- Mukherjee S., Sengupta S. Riboswitch Scanner: an efficient pHMM-based web-server to detect riboswitches in genomic sequences // Bioinformatics. 2016. V. 32. P. 776‒778.
- Nawrocki E. P., Eddy S. R. Infernal 1.1: 100-fold faster RNA homology searches // Bioinformatics. 2013. V. 29. P. 2933‒2935.
- Novikov A. D., Lavrov K. V., Kasianov A. S., Topchiy M. A., Gerasimova T. V., Yanenko A. S. Complete genome sequence of Rhodococcus sp. strain M8, a platform strain for acrylic monomer production // Microbiol. Resour. Announce. 2021. V. 10. № 10. Art. e01314-20. https://doi.org/10.1128/mra. 01314-20
- Nudler E., Mironov A. S. The riboswitch control of bacterial metabolism // Trends Biochem. Sci. 2004. V. 29. P. 11‒17.
- Pogorelova T. E., Ryabchenko L. E., Sunzov N. I., Yanenko A. S. Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8 // FEMS Microbiol. Lett. 1996. V. 144. P. 191‒195.
- Reese M. G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome // Comput. Chem. 2001. V. 26. P. 51‒56.
- Reuter J. S., Mathews D. H. RNAstructure: software for RNA secondary structure prediction and analysis // BMC Bioinf. 2010. V. 11. P. 1‒9.
- Riabchenko L., Podcherniaev D., Kotlova E., Ianenko A. Cloning the amidase gene from Rhodococcus rhodochrous M18 and its expression in Escherichia coli // Genetika. 2006. V. 42. P. 1075‒1082.
- Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite // Trends Genet. 2000. V. 16. P. 276‒277.
- Shemyakina A. O., Grechishnikova E. G., Novikov A. D., Asachenko A. F., Kalinina T. I., Lavrov K. V., Yanenko A. S. A set of active promoters with different activity profiles for superexpressing Rhodococcus Strain // ACS Synth. Biol. 2021. V. 10. P. 515‒530.
- Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., Lomsadze A., Pruitt K. D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline // Nucleic Acids Res. 2016. V. 44. P. 6614‒6624.
Supplementary files
