Effect of Electrical Stimulation of the External Circuit of Membraneless Bioelectrochemical Systems on Imidacloprid Degradation and Representation of the mtrB and DyP-Type Peroxidases Genes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In all variants where carbon felt was present, imidacloprid degradation by the microflora of bottom sediments was many times higher than in the control, reaching 84.0 ± 1.7% under the polar connection of an external voltage source (1.2 V). When Shewanella oneidensis MR-1 was introduced, almost complete degradation of the pollutant was observed, while in the control without electrodes, it was 29.7 ± 6.0. The relative representation of the genes of the MtrB transmembrane protein of the respiratory chain, which is associated with exoelectrogenesis, depended on the external chain and had a maximum value when the voltage source was connected polarly, correlating with the pesticide degradation by the autochthonous microflora, similar to the DyP-type peroxidase genes. The introduction of S. oneidensis MR-1 resulted in an almost tenfold increase in the relative representation of DyP-type peroxidase genes. In all experimental variants, the values of the DyP relative representation were significantly higher than in the control without carbon felt, as well as the degree of imidacloprid degradation under these experimental conditions.

Full Text

Restricted Access

About the authors

A. A. Samkov

Kuban State University

Author for correspondence.
Email: andreysamkov@mail.ru
Russian Federation, 350040, Krasnodar

S. M. Samkova

Kuban State University

Email: andreysamkov@mail.ru
Russian Federation, 350040, Krasnodar

M. N. Kruglova

Kuban State University

Email: andreysamkov@mail.ru
Russian Federation, 350040, Krasnodar

References

  1. Ножевникова А. Н., Русскова Ю. И., Литти Ю. В., Паршина С. Н., Журавлева Е. А., Никитина А. А. Синтрофия и межвидовой перенос электронов в метаногенных микробных сообществах // Микробиология. 2020. Т. 89. С. 131–151.
  2. Nozhevnikova A. N., Russkova Yu.I., Litti Yu.V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and interspecies electron transfer in methanogenic microbial communities // Microbiology (Moscow). V. 89. Р. 129‒148.
  3. Самков А. А., Чугунова Ю. А., Круглова М. Н., Моисеева Е. В., Волченко Н. Н., Худокормов А. А., Самкова С. М., Карасева Э. В. Обесцвечивание красителей в биоэлектрохимической системе при иммобилизации клеток Shewanella oneidensis MR-1 на поверхности анода и электрической стимуляции внешней цепи // Прикл. биохимия и микробиология. 2023. Т. 59. С. 191–199.
  4. Samkov A. A., Chugunova Yu.A., Kruglova M. N., Moiseeva E. V., Volchenko N. N., Khudokormov A. A., Samkova S. M., Karaseva E. V. Decolorization of dyes in a bioelectrochemical system depending on the immobilization of Shewanella oneidensis Mr-1 cells on the anode surface and electrical stimulation of an external circuit // Appl. Biochem. Microbiol. V. 59. Р. 198‒206.
  5. Cabrera J., Irfan M., Dai Y., Zhang P., Zong Y., Liu X. Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry ‒ a review // Chemosphere. 2021. V. 285. Art. 131428.
  6. Gautam P., Dubey S. K. Biodegradation of imidacloprid: molecular and kinetic analysis // Bioresour. Technol. 2022. V. 350. Art. 126915.
  7. Gautam P., Pandey A. K., Dubey S. K. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid // Environ. Res. 2023. V. 221. Art. 115271.
  8. Kiely P. D., Regan J. M., Logan B. E. The electric picnic: synergistic requirements for exoelectrogenic microbial communities // Curr. Opin. Biotechnol. 2011. V. 22. P. 378–385.
  9. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Loiko N. G., Litti Yu. V. Feasibility of successive hydrogen and methane production in a single-reactor configuration of batch anaerobic digestion through bioaugmentation and stimulation of hydrogenase activity and direct interspecies electron transfer // Int. J. Hydrog. Energy. 2023. V. 48. P. 12646–12660.
  10. Lan J., Wen F., Ren Y., Liu G., Jiang Y., Wang Z., Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils // Environ. Sci. Technol. 2023. V. 16. Art. 100278.
  11. Lu H., Yua Y., Xi H., Wang C., Zhou Y. Bacterial response to formaldehyde in an MFC toxicity sensor // Enzyme Microb. Technol. 2020. V. 140. Art. 109565.
  12. Li X., Fan S., Zhang Y., Li D., Su C., Qi Z., Liang H., Gao S., Chen M. Performance and microbial metabolic mechanism of imidacloprid removal in a microbial electrolysis cell-integrated adsorption biological coupling system // Bioresour. Technol. 2023. V. 386. Art. 129513.
  13. Li Y., Qiao S., Guo M., Hou C., Wang J., Yu C., Zhou J., Quan X. Microbial electrosynthetic nitrate reduction to ammonia by reversing the typical electron transfer pathway in Shewanella oneidensis // Cell Rep. Phys. Sci. 2023. V. 4. Art. 101433.
  14. Marzocchi U., Palma E., Rossetti S., Aulenta F., Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination ‒ the case of snorkel and cable bacteria // Water Res. 2020. V. 173. Art. 115520.
  15. Mohanakrishna G., Al-Raoush R.I., Abu-Reesh I. M. Sewage enhanced bioelectrochemical degradation of petroleum hydrocarbons in soil environment through bioelectrostimulation // Biotechnol. Rep. 2020. V. 27. Art. e00478.
  16. Sabourmoghaddam N., Zakaria M. P., Dzolkhifli O. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands // J. Saudi Soc. Agric. Sci. 2015. V. 14. P. 182–188.
  17. Shi L., Rosso K. M., Clarke T. A., Richardson D. J., Zachara J. M., Fredrickson J. K. Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1 // Front. Microbiol. 2012. V. 3. Art. 50. https://doi.org/10.3389/fmicb.2012.00050
  18. Tian J.-H., Pourcher A.-M., Klingelschmitt F., Le Roux S., Peu P. Class P dye-decolorizing peroxidase gene: degenerated primers design and phylogenetic analysis // J. Microbiol. Methods. 2016. V. 130. P. 148–153.
  19. Voeikova T. A., Emel’yanova L.K., Novikova L. M., Shakulov R. S., Sidoruk K. V., Smirnov I. A., Il’in V.K., Soldatov P. E., TyurinKuz’min A. Yu., Smolenskaya T. S., Debabov V. G. Intensification of bioelectricity generation in microbial fuel cells using Shewanella oneidensis MR-1 mutants with increased reducing activity // Microbiology (Moscow). 2013. V. 82. P. 410–414.
  20. Wang H., Xing L., Zhang H., Gui C., Jin S., Lin H., Li Q., Cheng Ch. Key factors to enhance soil remediation by bioelectrochemical systems (BESs): a review // Chem. Eng. J. 2021. V. 419. Art. 129600.
  21. Wang H., Zhao H.-P., Zhu L. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants // J. Hazard. Mater. 2020. V. 384. Art. 121495.
  22. Wu P., Zhang X., Niu T., Wang Y., Liu R., Zhang Y. The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulate using effluent as carbon source // Environ. Pollut. 2020. V. 267. Art. 114254.
  23. Xiao X., Xu C.-C., Wu Y.-M., Cai P.-J., Li W.-W., Du D.-L., Yu H.-Q. Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions // Bioresour. Technol. 2012. V. 110. P. 86–90.
  24. Yuan J.S, Reed A., Chen F., Stewart C. N. Jr. Statistical analysis of real-time PCR data // BMC Bioinform. 2006. V. 7. Art. 85.
  25. Yuan Y., Zhou L., Hou R., Wang Y., Zhou S. Centimeter-long microbial electron transport for bioremediation applications // Trends Biotechnol. 2021. V. 39. P. 181–193.
  26. Zhang X., Huang Y., Chen W.-J., Wu S., Lei Q., Zhou Z., Zhang We., Mishra S., Bhatt P., Chen S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides // Environ. Res. 2023. V. 218. Art. 114953.
  27. Zhi Z., Pan Y., Lu X., Wang J., Zhen G. Bioelectrochemical regulation accelerates biomethane production from waste activated sludge: focusing on operational performance and microbial community // Sci. Total Environ. 2022. V. 814. Art. 152736.
  28. Zhu S., Chen A., Chai Y., Cao R., Zeng J., Bai M., Peng L., Shao J., Wang X. Extracellular enzyme mediated biotransformation of imidacloprid by white-rot fungus Phanerochaete chrysosporium: mechanisms, pathways, and toxicity // Chem. Eng. J. 2023. V. 472. Art. 144798.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of the method of electrical stimulation of the external circuit of the bioelectrochemical system and the introduction of Shewanella oneidensis MR-1 on the biodegradation of imidacloprid in bottom sediments. 1 – autochthonous microflora; 2 – autochthonous microflora and S. oneidensis MR-1.

Download (78KB)
3. Fig. 2. Relative representation of DyP-type dye-discoloring peroxidase genes and transmembrane protein of the respiratory chain MtrB in the case of autochthonous microflora of bottom sediments (a) and autochthonous microflora of bottom sediments, where Shewanella oneidensis MR-1 (b) was additionally introduced. 1 – DyP; 2 – MtrB.

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences