Effect of Staphylococcus aureus Cell-Free Culture Liquid on the Structure and Biochemical Composition of Klebsiella pneumoniae and Pseudomonas aeruginosa Biofilms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recently acquired data suggest that many infections are associated with formation of multispecies biofilms, in which both antibiotic sensitivity and the permeability of the extracellular matrix differ from those of monocultures. In this work, we show that addition of cell-free culture liquid of Staphylococcus aureus to the biofilms of Klebsiella pneumoniae and Pseudomonas aeruginosa increased the content of α- and β-polysaccharides in the matrix up to twofold, which in turn probably affected the biofilm structure. Increased content of the polysaccharide component was also confirmed by a significantly increased expression of the K. pneumoniae pgaA gene and of the P. aeruginosa pelA and pslA genes in the presence of S. aureus culture liquid.

Full Text

Restricted Access

About the authors

A. V. Mironova

Kazan (Volga Region) Federal University

Email: kairatr@yandex.ru
Russian Federation, Kazan

M. S. Fedorova

Kazan (Volga Region) Federal University

Email: kairatr@yandex.ru
Russian Federation, Kazan

N. D. Zakarova

Kazan (Volga Region) Federal University

Email: kairatr@yandex.ru
Russian Federation, Kazan

A. R. Salikhova

Kazan (Volga Region) Federal University

Email: kairatr@yandex.ru
Russian Federation, Kazan

E. Yu. Trizna

Kazan (Volga Region) Federal University

Email: kairatr@yandex.ru
Russian Federation, Kazan

A. R. Kayumov

Kazan (Volga Region) Federal University

Author for correspondence.
Email: kairatr@yandex.ru
Russian Federation, Kazan

References

  1. Baidamshina D., Trizna E., Holyavka M. Targeting microbial biofilms using Ficin, a nonspecific plant protease // Sci. Rep. 2017. V. 7. Art. 46068.
  2. Bogachev M., Volkov V., Markelov O., Trizna E., Baydamshina D., Melnikov V., Zelenikhin P., Murtazina R., Sharafutdinov I., Kayumov A. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images // PLoS One. 2018. V. 13. Art. e0193267.
  3. Bottery M. J., Pitchford J. W., Friman V. P. Ecology and evolution of antimicrobial resistance in bacterial communities // ISME J. 2021. V. 15. P. 939‒948.
  4. Chen K. M., Chiang M. K., Wang M., Ho H. C., Lu M. C., Lai Y. C. The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation // Microb. Pathog. 2014. V. 10. P. 89‒99.
  5. Chew S. C., Kundukad B., Seviour T., Van der Maarel J. R.C., Yang L., Rice S. A., Doyle P., Kjelleberg S. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides // mBio. 2014. V. 5. Art. e01536–14.
  6. Ciofu O., Moser C., Jensen P. Ø., Høiby N. Tolerance and resistance of microbial biofilms // Nature Rev. Microbiol. 2022. V. 20. P. 621‒635.
  7. Colvin K. M., Gordon V. D., Murakami K., Borlee B. R., Wozniak D. J., Wong G. C. L. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa // PLoS Pathog. 2011. V. 7. Art. e1001264.
  8. Dalton T., Dowd S. E., Wolcott R. D., Sun Y., Watters C., Griswold J. A., Rumbaugh K. P. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions // PLoS One. 2011. V. 6. Art. e27317.
  9. Eick S. Biofilms. Oral Biofilms, 2020. 232 p. https://doi.org/10.1159/000510184
  10. Fedorova M. S., Mironova A. V., Kayumov A. R. Cell-free supernatant of Staphylococcus aureus culture increases antimicrobials susceptibility of Pseudomonas aeruginosa // Opera Medica et Physiologica. 2022. V. 9. P. 113‒120.
  11. Hobley L., Harkins C., MacPhee C., Stanley-Wall N. R. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes // FEMS Microbiol. Revs. 2015. V. 39. P. 649‒669.
  12. Itoh Y., Rice J. D., Goller C., Pannuri A., Taylor J., Meisner J., Beveridge T. J., Preston J. F., Romeo T. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamine // J. Bacteriol. 2008. V. 190. P. 3670‒3680.
  13. Kayumov A., Khakimullina E., Sharafutdinov I., Trizna E., Latypova L., Lien H., Margulis A., Bogachev M., Kurbangalieva A. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones // J. Antibiot. (Tokyo). 2015. V. 68. P. 297‒301.
  14. Kot B., Sytykiewicz H., Sprawka I. Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions // Int. J. Mol. Sci. 2018. V. 19. Art. 3487.
  15. Kranjec C., Morales Angeles D., Torrissen Mårli M., Fernández L., García P., Kjos M., Diep D. B. Staphylococcal biofilms: Challenges and novel therapeutic perspectives // Antibiotics. 2021. V. 10. Art. 131.
  16. Mironova A. V., Karimova A. V., Bogachev M. I., Kayumov A. R., Trizna E. Y. Alterations in antibiotic susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in dual species biofilms // Int. J. Mol. Sci. 2023. V. 24. Art. 8475.
  17. Orazi G., O’Toole G.A. “It takes a village”: mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms // J. Bacteriol. 2019. V. 202. Art. e00530–19.
  18. Otto M. Staphylococcal biofilms // Microbiol. Spectr. 2018. V. 6. P. 1–26. https://doi.org/10.1128/microbiolspec.GPP3-0023-2018
  19. Radlinski L. C., Rowe S. E., Brzozowski R., Wilkinson A. D., Huang R., Eswara P., Conlon B. P. Chemical induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus aureus // Cell. Chem. Biol. 2019. V. 26. P. 1355‒1364.
  20. Ryder C., Byrd M., Wozniak D. J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development // Curr. Opin. Microbiol. 2007. V. 10. P. 644‒648.
  21. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory press, 1989.
  22. Sharma D., Misba L., Khan A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities // Antimicrob. Resist. Infect. Control. 2019. V. 8. P. 1‒10. https://doi.org/10.1186/s13756-019-0533-3
  23. Trizna E. Y., Yarullina M. N., Baidamshina D. R., Mironova A. V., Akhatova F. S., Rozhina E., Fakhrullin R. F., Khabibrakhmanova A. M., Kurbangalieva A. R., Bogachev M. I., Kayumo, A. R. Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus‒Pseudomonas aeruginosa dual-species biofilm // Sci. Rep. 2018. V. 10. Art. 14849.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of cell-free culture fluid of S. aureus on the structure and matrix composition of K. pneumoniae (a, b, c) and P. aeruginosa (d, e, f) biofilms. Residual biofilm was assessed by crystal violet staining (a, d), biochemical composition (b, e), biofilm matrix distribution and structure (c, f) were evaluated using fluorescent dyes ConA-TMR, Calcofluor White M2R (CFW), Sypro Orange. Quantitative analysis of micrographs was performed using BioFilmAnalyzer software, the content of components as a percentage of control is indicated. Labelling corresponds to 50 µm

Download (502KB)
3. Fig. 2. Relative expression of genes encoding extracellular polysaccharides of K. pneumoniae (a) and P. aeruginosa (b, c) biofilms without treatment (control) and in the presence of culture fluid of Staphylococcus aureus (+12% CJ)

Download (142KB)

Copyright (c) 2024 Russian Academy of Sciences