Taxonomic Composition of Cultured Fe-and Mn-Oxidizing Bacteria and Microbial Abundance in Fe-Mn Nodules of Different Sizes
- Authors: Timofeeva Y.О.1, Martynenko E.S.1,2, Sidorenko M.L.1, Kim A.V.1,2, Kazarin V.M.1
-
Affiliations:
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
- Far Eastern Federal University
- Issue: Vol 93, No 3 (2024)
- Pages: 290-302
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655114
- DOI: https://doi.org/10.31857/S0026365624030047
- ID: 655114
Cite item
Abstract
Taxonomic diversity and quantitative distribution of cultured forms of Fe-and Mn-oxidizing microorganisms in Fe-Mn nodules of different sizes and fine earth of Gleyic Luvisols formed in the territory not affected by direct anthropogenic impact, were analyzed. The results were obtained using a combination of microbiological, molecular and analytical methods and noninvasive techniques. Most of the microorganisms which were cultured from the nodules were Mn oxidizers. Bacteria of the genera Bacillus, Rhodococcus, Lysinibacillus, Pseudomonas, and Priestia were identified in the nodules. Quantitative distribution of Fe-and Mn-oxidizing microorganisms in the outer and inner zones of the nodules of different sizes demonstrated that Mn-oxidizing microorganisms were involved in all stages of nodules formation and development, while Fe-oxidizing microorganisms participated in the initial phase of their formation. Spherules and porous structures of bacterial nature were observed in the studied nodules. The host fine earth was characterized by differences in the relative abundance of the dominant microbial groups in the profile. Manganese-oxidizing bacteria were represented in the soil fine earth by the genera Prestia and Methylobacterium.
Full Text

About the authors
Ya. О. Timofeeva
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: martynenko98@inbox.ru
Russian Federation, Vladivostok
E. S. Martynenko
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University
Author for correspondence.
Email: martynenko98@inbox.ru
Russian Federation, Vladivostok; Vladivostok
M. L. Sidorenko
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: martynenko98@inbox.ru
Russian Federation, Vladivostok
A. V. Kim
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University
Email: martynenko98@inbox.ru
Russian Federation, Vladivostok; Vladivostok
V. M. Kazarin
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: martynenko98@inbox.ru
Russian Federation, Vladivostok
References
- Аристовская Т. В. Роль микроорганизмов в мобилизации и закреплении железа в почвах // Почвоведение. 1975. № 4. С. 290–295.
- Астафьева М. М., Жегалло Е. А., Ривкина Е. М., Самылина О. С., Розанов А. Ю., Зайцева Л. В., Авдонин В. В., Карпов Г. А., Сергеева Н. Е. Бактериальная палеонтология. М.: Российская академия наук, 2021. 124 с.
- Водяницкий Ю. Н. Гидроксиды железа в почвах // Почвоведение. 2010. № 11. С. 1341–1352.
- Vodyanitskii Y. N. Iron hydroxides in soils: a review of publications // Euras. Soil Sci. 2010. V. 43. P. 1244–1254. https://doi.org/10.1134/S1064229310110074
- Зайдельман Ф. Р., Никифорова А. С. Генезис и диагностическое значение новообразований почв лесной и лесостепной зон. М.: МГУ им. М. В. Ломоносова, 2001. 216 с.
- Захарова, Ю.Р., Парфенова В. В. Метод культивирования микроорганизмов, окисляющих железо и марганец в донных отложениях озера Байкал // Известия РАН. Сер. биол. 2007. № 3. С. 290–295.
- Звягинцев Д. Г. Методы почвенной микробиологии и биохимии. М.: МГУ, 1991. 304 с.
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Костенков Н. М. Окислительно-восстановительные режимы в почвах периодического переувлажнения (Дальний Восток). М.: Наука, 1986.
- Логинова О. О., Данг Т. Т., Белоусова Е. В., Грабович М. Ю. Использование штаммов рода Acinetobacter для биоремедиации нефтезагрязненных почв на территории Воронежской области // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2011. № 2. С. 127–133.
- Лысак В. В. Микробиология. Минск: БГУ, 2007. 426 с.
- Лысак Л. В., Кадулин М. С., Конова И. А., Лапыгина Е. В., Иванов А. В., Звягинцев Д. Г. Численность, жизнеспособность и таксономический состав наноформ бактерий в железо-марганцевых конкрециях // Почвоведение. 2013. № 6. С. 707–714.
- Lysak L. V., Kadulin M. S., Konova I. A., Lapygina E. V., Ivanov A. V., Zvyagintsev D. G. Population number, viability, and taxonomic composition of the bacterial nanoforms in iron-manganic concretions // Euras. Soil Sci. 2013. V. 46. P. 668–675. https://doi.org/10.1134/S1064229313060069
- М-02-0604-2007. Методика выполнения измерений массовой доли кремния, кальция, титана, ванадия, хрома, бария, марганца, железа, никеля, меди, цинка, мышьяка, стронция, свинца, циркония, молибдена, в порошковых пробах почв и донных отложений рентгеноспектральным методом с применением энергодисперсионных рентгенофлуоресцентных спектрометров типа EDX фирмы “Shimadzu”. СПб., 2007. 17 с.
- Мартынова М. В. Формы нахождения марганца, их содержание и трансформация в пресноводных отложениях // Экологическая химия. 2012. Т. 21. С. 38–52.
- Пиневич А. В. Микробиология железа и марганца. СПб.: СПбГУ, 2005. 374 с.
- Пуртова Л. Н., Тимофеева Я. О. Изучение некоторых свойств и активности каталазы агротемногумусовых подбелов при различных видах агротехнического воздействия // Почвоведение. 2022. № 10. С. 1277–1289.
- Purtova L. N., Timofeeva Ya. O. Study of some properties and catalase activity in albic stagnosols under different agrogenic impacts // Euras. Soil Sci. 2022. V. 55. P. 1436–1445. https://doi.org/10.1134/S1064229322100131
- Пуртова Л. Н., Тимофеева Я. О. Характеристика мелкозема и ортштейнов агрогенных почв южной части Приморского края: физико-химические, оптические свойства, каталазная и каталитическая активность // Почвоведение. 2021. № 12. С. 1481–1491.
- Purtova L. N., Timofeeva Y. O. Fine earth and nodules in agrogenic soils from the south of Primorskii region: physicochemical and optical properties, catalase and catalytic activity // Euras. Soil Sci. 2021. V. 54. P. 1855–1863. https://doi.org/10.1134/S1064229321120097
- Росликова В. И. Марганцево–железистые новообразования в почвах равнинных ландшафтов гумидной зоны. Владивосток: Дальнаука, 1996. 291 с.
- Тимофеева Я. О. Накопление и фракционирование микроэлементов в почвенных железо-марганцевых конкрециях различного размера // Геохимия. 2008. № 3. С. 293–301.
- Timofeeva Y. O. Accumulation and fractionation of trace elements in soil ferromanganese nodules of different size // Geochem. Int. 2008. V. 46. P. 260–267. https://doi.org/10.1134/S0016702908030038
- Тимофеева Я. О., Голов В. И. Аккумуляция микроэлементов в ортштейнах почв // Почвоведение. 2010. № 4. С. 434–444.
- Timofeeva Y. O., Golov V. I. Accumulation of microelements in iron nodules in concretions in soils: a review // Euras. Soil Sci. 2010. V. 43. P. 401–407. https://doi.org/10.1134/S1064229310040058
- Федорюк Е. Д., Няникова Г. Г. Выделение культур железо- и марганец-окисляющих микроорганизмов // Наука и образование в современной конкурентной среде. 2015. № 1. С. 3–8.
- Холопов Ю. А. Изучение реакции микроорганизмов почв лесных ценозов на внесение солей свинца и кадмия в условиях модельного опыта // Известия Самарского научного центра РАН. 2013. Т. 15. С. 260–267.
- Щапова Л. Н. Микрофлора почв юга Дальнего востока России. Владивосток: ДВО РАН, 1994. 186 с.
- Ainiwaer A., Liang Y., Ye X., Gao R. Characterization of a novel Fe2+ activated non-blue laccase from Methylobacterium extorquens // Int. J. Mol. Sci. 2022. V. 23. Art. 9804. https://doi.org/10.3390/ijms23179804
- Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI–BLAST: a new generation of protein database search programs // Nucl. Acids Res. 1997. V. 25. Р. 3389–3402. https://doi.org/10.1093/nar/25.17.3389
- Andreini C., Bertini I., Cavallaro G., Holliday G. L., Thornton J. M. Metal ions in biological catalysis: from enzyme databases to general principles // J. Biol. Inorg. Chem. 2008. V. 13. P. 1205–1218. https://doi.org/10.1007/s00775-008-0404-5
- Cappelletti M., Presentato A., Piacenza E., Firrincieli A., Turner R. J., Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 8567–8594. https://doi.org/10.1007/s00253-020-10861-z
- Ciancio C. L., Piazza A., Masotti F., Garavaglia B. S., Ottado J., Gottig N. Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in Pseudomonas sp. MOB-449 // Front. Mol. Biosci. 2022. V. 9. Art. 1015582. https://doi.org/10.3389/fmolb.2022.1015582.
- Cornu S., Deschatrettes V., Salvador-Blanes S., Clozul B., Hardy M., Branchut S., Forestier L. L. Trace element accumulation in Mn-Fe-oxide nodules of a planasolic horizon // Geoderma. 2005. V. 125. P. 11–24. https://doi.org/10.1016/j.geoderma.2004.06.009
- Cotroneo S., Schiffbauer J. D., McCoy V.E., Wortmann U. G., Darroch S. A., Peng Y., Laflamme M. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois // Geobiology. 2016. V. 14. P. 543–555. https://doi.org/10.1111/gbi.12197
- Dabard M. P., Loi A. Environmental control on concretion-forming processes: examples from Paleozoic terrigenous sediments of the North Gondwana margin, Armorican Massif (Middle Ordovician and Middle Devonian) and SW Sardinia (Late Ordovician) // Sediment. Geol. 2012. V. 267–268. P. 93–103. https://doi.org/10.1016/j.sedgeo.2012.05.013
- Dourado M. N., Camargo Neves A. A., Santos D. S., Araújo W. L. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. // BioMed Res. Int. 2015. Art. 909016. https://doi.org/10.1155/2015/909016.
- Emenike C. U., Agamuthu P., Fauziah S. H. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil // Environ. Earth Sci. 2016. V. 75. Art. 26. https://doi.org/10.1007/s12665-015-4805-9
- Ettler V., Chren M., MihaljevičM., Drahota P., Kříbek B., Veselovský F., Sracek O., Vaněk A., Penížek V., Komárek M., Mapani B., Kamona F. Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area // Geoderma. 2017. V. 299. P. 32–42. https://doi.org/10.1016/j.geoderma.2017.03.022
- Fischel M. H.H., Clarke C. E., Sparks D. L. Synchrotron resolved microscale and bulk mineralogy in manganese-rich soils and associated pedogenic concretions // Geoderma. 2023. V. 430. Art. 116305. https://doi.org/10.1016/j.geoderma.2022.116305
- Frawley E. R., Fang F. C. The ins and outs of bacterial iron metabolism // Mol. Microbiol. 2014. V. 93. P. 609–616. https://doi.org/10.1111/mmi.12709
- Gasparatos D. Fe-Mn concretions and nodules to sequester heavy metals in soils // Environ. Chem. Sust. World. 2012. V. 2. P. 443–474. https://doi.org/10.1007/978-94-007-2439-6_11
- Gasparatos D., Massas I., Godelitsas A. Fe-Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: current knowledge and gaps // Catena. 2019. V. 182. Art. 104106. https://doi.org/10.1016/j.catena.2019.104106
- Ghosh P. K., Maiti T. K., Pramanik K., Ghosh S. K., Mitra S., De T. K. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity // Chemosphere. 2018. V. 211. P. 407–419. https://doi.org/10.1016/j.chemosphere.2018.07.148
- Gupta R. S., Patel S., Saini N., Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 5753–5798. https://doi.org/10.1099/ijsem.0.004475
- Hu C., Zhang Y., Zhang L., Luo W. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils // J. Microbiol. Biotechnol. 2013. V. 24. P. 534–544. https://doi.org/10.4014/jmb.1310.10001
- Hu M., Li F., Lei J., Fang Y., Tong H., Wu W., Liu C. Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland // Environ. Sci. Process. Impacts. 2015. V. 17. P. 213–224. https://doi.org/10.1039/c4em00407h
- Jofré I., Matus F., Mendoza D., Nájera F., Merino C. Manganese-oxidizing Antarctic bacteria (Mn-Oxb) release reactive oxygen species (ROS) as secondary Mn(II) oxidation mechanisms to avoid toxicity // Biology. 2021. V. 10. Art. 1004. https://doi.org/10.3390/biology10101004
- Kepkay P. E., Nealson K. H. Growth of a manganese oxidizing Pseudomonas sp. in continuous culture // Arch. Microbiol. 1987. V. 148. P. 63–67. https://doi.org/10.1007/BF00429649
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2016. V. 35. P. 1547–1549. https://doi.org/10.1093/nar/25.17.3389
- Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses // Proc. Natl. Acad. Sci. USA. 1985. V. 82. Р. 6955–6959. https://doi.org/10.1073/pnas.82.20.6955
- Li J., Guo Y. K., Zhao Q. X., He J. Z., Zhang Q., Cao H. Y., Liang C. Q. Microbial cell wall sorption and Fe-Mn binding in rhizosphere contribute to the obstruction of cadmium from soil to rice // Front. Microbiol. 2023. V. 14. Art. 1162119. https://doi.org/10.3389/fmicb.2023.1162119
- Li-Mei Z., Liu F., Tan W., Feng X., Zhu Y., He J. Microbial DNA extraction and analyses of soil iron–manganese nodules // Soil Biol. Biochem. 2008. V. 40. P. 1364–1369. https://doi.org/10.1016/j.soilbio.2007.01.004
- Liu C., Massey M. S., Latta D. E., Xia Y., Li F., Gao T., Hua J. Fe(II)-induced transformation of iron minerals in soil ferromanganese nodules // Chem. Geol. 2021. V. 559. Art. 119901. https://doi.org/10.1016/j.chemgeo.2020.119901
- Lysak L., Konova I., Lapygina E., Soina V., Chekin M. Filtered forms of prokaryotes and bacteriophages in soil concretions // IOP Conf. Ser. Earth Environ. Sci. 2019. V. 368. Art. 012030. https://doi.org/10.1088/1755-1315/368/1/012030
- Lyu J., Yu X., Jiang M., Cao W., Saren G., Chang F. The mechanism of microbial-ferromanganese nodule interaction and the contribution of biomineralization to the formation of oceanic ferromanganese nodules // Microorganisms. 2021. V. 9. Art. 1247. https://doi.org/10.3390/microorganisms9061247
- Powell M. M., Rao G., Britt R. D., Rittle J. Enzymatic hydroxylation of aliphatic c-h bonds by a Mn/Fe cofactor // bioRxiv: the preprint server for biology. 2023. Art. 532131. https://doi.org/10.1101/2023.03.10.532131
- Schulz M. S., Vivit D., Schulz Ch., Fitzpatrick J., White. A. Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California // Soil Sci. Soc. Am. J. 2010. V. 74. P. 550–564. https://doi.org/10.2136/sssaj2009.0144
- Shahid M., Zeyad M. T., Syed A., Singh U. B., Mohamed A., Bahkali A. H., Elgorban A. M., Pichtel J. Stress-tolerant endophytic isolate Priestia aryabhattai BPR-9 modulates physio-biochemical mechanisms in wheat (Triticum aestivum L.) for enhanced salt tolerance // Int. J. Environ. Res. Public Health. 2022. V. 19. Art. 10883. https://doi.org/10.3390/ijerph191710883
- Singh R., Grigg J. C., Qin W., Kadla J. F., Murphy M. E., Eltis, L. D. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium // ACS Chem. Biol. 2013. V. 8. P. 700–706. https://doi.org/10.1021/cb300608x
- Sipos P., Kovacs I., Balazs R., Toth A., Barna G., Mako A. Micro-analytical study of the distribution of iron phases in ferromanganese nodules // Geoderma. 2022. V. 405. Art. 115455. https://doi.org/10.1016/j.geoderma.2021.115445
- Suhr M., Raff J., Pollmann K. Au-interaction of Slp1 polymers and monolayer from Lysinibacillus sphaericus JG-B53 — QCM-D, ICP-MS and AFM as tools for biomolecule-metal studies // J. Vis. Exp. 2016. V. 107. Art. e53572. https://doi.org/10.3791/53572
- Tan W. F., Liu F., Li Y. H., Hu H. Q., Huang Q. Y. Elemental composition and geochemical characteristics of iron-manganese nodules in main soils of China // Pedosphere. 2006. V. 16. P. 72–81. https://doi.org/10.1016/S1002-0160(06)60028-3
- Timofeeva Y. O., Karabtsov A., Ushkova, M., Burdukovskii M., Semal V. Variation of trace element accumulation by iron-manganese nodules from Dystric Cambisols with and without contamination // J. Soils Sediments. 2021. V. 21. P. 1064–1078. https://doi.org/10.1007/s11368-020-02814-w
- Timofeeva Y. O., Karabtsov A. A., Semal’ V.A., Burdukovskii M. L., Bondarchuk N. V. Iron-manganese nodules in udepts: the dependence of the accumulation of trace elements on nodule size // Soil Sci. Soc. Am. J. 2014. V. 78. P. 767–778. https://doi.org/10.2136/sssaj2013.10.0444
- Zhang L. M., Liu F., Tan W. F., Feng X. H., ZhuY., He J. Microbial DNA extraction and analyses of soil iron-manganese nodules // Soil Biol. Biochem. 2008. V. 40. P. 1364–1369. https://doi.org/10.1016/j.soilbio.2007.01.004
Supplementary files
