Rhodopin Incorporated into the Allochromatium vinosum LH2 Complex Is Able to Generate Singlet Oxygen under Illumination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

DPA membranes from Allochromatium vinosum cells, in which carotenoid biosynthesis was inhibited using diphenylamine (DPA) were obtained, into which rhodopin was incorporated. The LH2 complex with rhodopin content of 85% was isolated. Using a test for the thermal stability of LH2 complexes (DPA and with incorporated rhodopin), it was established that carotenoids of the early stages of biosynthesis (≤1 molecules per complex) did not interfere with rhodopin incorporation. It was found that when the LH2 complex with incorporated rhodopin was irradiated with light at the wavelength of 502 nm, BChl850 was photobleached at a rate close to that in the control LH2 complex. This indicates that rhodopin, after being incorporated into the DPA LH2 complex, is capable of generating singlet oxygen under illumination. Previously obtained data on heterogeneity of the carotenoid composition in DPA LH2 complexes (variation in the number of individual carotenoids molecules per complex in the general population) and our earlier suggestion about the structural role of carotenoids, namely, their ability to stabilize the LH2 complexes, were confirmed. Based on analysis of our results, as well as of the literature data, the interaction of singlet oxygen and carotenoids is discussed.

Full Text

Restricted Access

About the authors

Z. K. Makhneva

Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Author for correspondence.
Email: andrey-moskalenko@rambler.ru
Russian Federation, Pushchino

M. A. Bolshakov

Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: andrey-moskalenko@rambler.ru
Russian Federation, Pushchino

A. A. Ashikhmin

Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: andrey-moskalenko@rambler.ru
Russian Federation, Pushchino

A. A. Moskalenko

Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: andrey-moskalenko@rambler.ru
Russian Federation, Pushchino

References

  1. Ашихмин А. А. Каротиноиды светособирающих комплексов пурпурной серной бактерии Ect. haloalkaliphila. Автореферат дис. … канд. биол. наук, 17.07.2014. Пущино: Институт фундаментальных проблем биологии РАН, 2014. 22 с.
  2. Ашихмин А. А., Бендиткис А. С., Москаленко А. А., Красновский А. А. мл. Фитофлуин ‒ эффективный фотосенсибилизатор образования синглетного кислорода под действием УФ-А излучения // Биохимия. 2020. Т. 85. С. 907–915. https://doi.org/10.31857/S0320972520070052
  3. Ashikhmin A., Benditkis A., Moskalenko A., Krasnovsky Jr A. A. Phytofluene as a highly efficient UV-A photosensitizer of singlet oxygen generation // Biochemistry (Moscow). 2020. V. 85. P. 773–780. https://doi.org/10.1134/S0006297920070056
  4. Ашихмин А., Махнева З., Большаков М., Москаленко А. Влияние количества сопряженных двойных связей в молекулах каротиноидов на эффективность переноса энергии на бактериохлорофилл в светособирающих комплексах LН2 из Allochromatium vinosum, штамм МГУ // ДАН. 2018. Т. 483. C. 332–336.
  5. Ashikhmin A. A., Makhneva Z. K., Bolshakov M. A., Moskalenko A. A. The influence of the number of conjugated double bonds in carotenoid molecules on the energy transfer efficiency to bacteriochlorophyll in light-harvesting complexes LH2 from Allochromatium vinosum strain MSU // Dokl. Biochem. Biophys. 2018. V. 483. P. 321–325.
  6. Ашихмин А. А., Бендиткис А. С., Москаленко А. А., Красновский (мл.) А.А. ζ-Каротин: генерация и тушение синглетного кислорода, сравнение с фитофлуином // Биохимия. 2022. V. 87. P. 1471–1482. https://doi.org/10.31857/S0320972522100128
  7. Ashikhmin A. A., Benditkis A. S., Moskalenko A. A., Krasnovsky Jr A. A. ζ-Carotene: generation and quenching of singlet oxygen, comparison with phytofluene // Biochemistry (Moscow). 2022. V. 87. P. 1169–1178. https://doi.org/10.1134/S0006297922100108
  8. Большаков М. А. Роль каротиноидов в процессе фотоокисления бактериохлорофилла in vivo. Автореферат дис. … канд. биол. наук, 20.12.2012. Пущино: Институт фундаментальных проблем биологии РАН, 2012. 22 с.
  9. Bolshakov M. A. The role of carotenoids in the photooxidation of bacteriochlorophyll in vivo. PhD thesis. 20.12.2012. Pushchino: Institute of Fundamental Problems of Biology Russian Academy of Sciences. P. 22.
  10. Большаков М. А., Ашихмин А. А., Махнева З. К., Москаленко А. А. Влияние интенсивности освещения и ингибирования биосинтеза каротиноидов на сборку периферийных светособирающих комплексов пурпурной серной бактерии Allochromatium vinosum ATCC17899 // Микробиология. 2016. Т. 85. С. 403–414.
  11. Bolshakov M. A., Ashikhmin A. A., Makhneva Z. K., Moskalenko A. A. Effect of illumination intensity and inhibition of carotenoid biosynthesis on assembly of peripheral light-harvesting complexes in purple sulfur bacteria Allochromatium vinosum ATCC17899 // Microbiology (Moscow). 2016. V. 85. P. 420–429.
  12. Егоров С. Ю., Красновский А. А., Вычегжанина И. В., Дроздова Н. Н. Фотосенсибилизированное образование и тушение синглетного молекулярного кислорода мономерными и агрегированными молекулами пигментов фотосинтезирующих бактерий // Доклады Академии наук. 1990. Т. 310. С. 471‒474.
  13. Egorov S. Y., Krasnovskii, Jr. A.A., Vychegzhanina I. V., Drozdova N. N., Krasnovskii A. A. Generation and quenching of molecular single oxygen by pigment molecules in photosynthetic bacteria // Doklady Biophysics. 1990. V. 310. № 2. P. 6‒10.
  14. Кленина И. Б., Махнева З. К., Москаленко А. А., Проскуряков И. И. Селективное возбуждение каротиноидов светособирающих комплексов LH2 Allochromatium vinosum приводит к окислению бактериохлорофилла // Биохимия. 2022. Т. 87. С. 1425–1433. https://doi.org/10.31857/S0320972522100086
  15. Klenina I. B., Makhneva Z. K., Moskalenko A. A., Proskuryakov I. I. Selective excitation of carotenoids of the Allochromatium vinosum Light-Harvesting LH2 complexes leads to oxidation of bacteriochlorophyll // Biochemistry (Moscow). 2022. V. 87. P. 1130–1137. https://doi.org/10.1134/S0006297922100066
  16. Кондратьева Е. Н. Фотосинтезирующие бактерии и бактериальный фотосинтез. М.: Изд-во МГУ, 1972. 75 с.
  17. Красновский А. А., Бендиткис А. С., Козлов А. С. Кинетические измерения фосфоресценции синглетного кислорода методом разрешенного во времени счета фотонов в растворителях, не содержащих водородных атомов // Биохимия. 2019. Т. 84. С. 240‒251.
  18. Krasnovsky A. A., Jr., Benditkis A. S., Kozlov A. S. Kinetic measurements of singlet oxygen phosphorescence in the solvents lacking hydrogen atoms using the method of time resolved photon counting // Biochemistry (Moscow). 2019. V. 84. P. 153–163.
  19. Махнева З. К., Ашихмин А. А., Большаков М. А., Москаленко А. А. Образование 3-ацетил-хлорофилла в светособирающих комплексах пурпурных бактерий при химическом окислении // Биохимия. 2016. Т. 81. C. 282‒294.
  20. Makhneva Z. K., Ashikhmin A. A., Bolshakov M. A., Moskalenko A. A. 3-Acetyl-chlorophyll formation in light-harvesting complexes of purple bacteria by chemical oxidation // Biochemistry (Moscow). 2016. V. 81. P. 176–86.
  21. Махнева З. К., Ашихмин А. А., Большаков М. А., Москаленко А. А. Взаимодействие бактериохлорофилла с синглетным кислородом в мембранах пурпурных фотосинтезирующих бактерий: существует ли защитная функция каротиноидов? // ДАН. 2019а. Т. 486. С. 504–508. https://doi.org/10.31857/S0869-56524864504-508
  22. Makhneva Z. K., Ashikhmin A. A., Bolshakov M. A., Moskalenko A. A. Bacteriochlorophyll interaction with singlet oxygen in membranes of purple photosynthetic bacteria: does the protective function of carotenoids exist?// Dokl. Biochem. Biophys. 2019а. V. 486. P. 216–219. https://doi.org/10.1134/S1607672919030141
  23. Махнева З. К., Ашихмин А. А., Большаков М. А., Москаленко А. А. Выделение синглетного кислорода мембранами пурпурных фотосинтезирующих бактерий при облучении светом происходит при возможном участии каротиноидов // Микробиология. 2020. Т. 89. С. 169–179. https://doi.org/10.31857/S0026365620010097
  24. Makhneva Z. K., Ashikhmin A. A., Bolshakov M. A., Moskalenko A. A. Carotenoids are probably involved in singlet oxygen generation in the membranes of purple photosynthetic bacteria under light irradiation // Microbiology (Moscow). 2020. V. 89. P. 164–173.
  25. Махнева З. К., Ашихмин А. А., Большаков М. А., Москаленко А. А. Защита БХЛ850 от действия синглетного кислорода в мембранах серной фотосинтезирующей бактерии Allochromatium vinosum с помощью тушителей // Микробиология. 2019б. Т. 88. C. 91–99. https://doi.org/10.1134/S0026365619010129
  26. Makhneva Z. K., Ashikhmin A. A., Bolshakov M. A., Moskalenko A. A. Quenchers protect BChl850 from action of singlet oxygen in the membranes of a sulfur photosynthetic bacterium Allochromatium vinosum strain MSU // Microbiology. 2019b. V. 88. P. 79–86.
  27. Махнева З. К., Ерохин Ю. Е., Москаленко А. А. Фотосенсибилизированное каротиноидами окисление димеров бактериохлорофилла светособирающих комплексов В800–850 в клетках Allochromatium minutissimum // ДАН. 2007. Т. 416. С. 408–411.
  28. Makhneva Z. K., Erokhin Yu.E., Moskalenko A. A. Carotenoid-photosensitized oxidation of bacteriochlorophyll dimers in light-harvesting complexes B800–850 in Allochromatium minutissimum cells // Dokl. Biochem. Biophys. 2007. V. 416. № 1‒6. P. 256‒259. https://doi.org/10.1134/S1607672907050080
  29. Махнева З. К., Москаленко А. А. Каротиноиды в комплексах LH2 из Allochromatium vinosum способны при освещении генерировать синглетный кислород, который окисляет БХл850 // Микробиология. 2022. Т. 91. С. 466–474. https://doi.org/10.31857/S0026365622300218
  30. Makhneva Z. K., Moskalenko A. A. Carotenoids in LH2 complexes from Allochromatium vinosum under illumination are able to generate singlet oxygen which oxidizes BChl850 // Microbiology (Moscow). 2022. V. 91. P. 409–416. https://doi.org/10.1134/S002626172230021X
  31. Махнева З. К., Смолова Т. Н., Большаков М. А., Москаленко А. А. Комплекс LH2 из серной бактерии Allochromatium vinosum – природный сенсор синглетного кислорода // Биохимия. 2022. Т. 87. С. 1459–1470. https://doi.org/10.31857/S0320972522100116
  32. Makhneva Z. K., Smolova T. N., Bolshakov M. A., Moskalenko A. A. LH2 complex from sulfur bacteria Allochromatium vinosum – natural singlet oxygen sensor // Biochemistry (Moscow). 2022. V. 87. P. 1159–1168. https://doi.org/10.1134/S0006297922100091
  33. Москаленко A. A., Ерохин Ю. Е. Выделение пигмент-липопротеиновых комплексов из пурпурных бактерий методом препаративного электофореза в полиакриламидном геле // Микробиология. 1974. V. 43. С. 654–657.
  34. Москаленко А. А. Изучение пигмент-липопротеиновых комплексов из Chromatium minutissimum. Дисс. … канд. биол. наук. Пущино, 1974. 189 c.
  35. Москаленко A. A., Кузнецова Н. Ю., Ерохин Ю. Е. Выделение, спектральные и фотохимические характеристики трех типов пигмент-белковых комплексов из Chromatium с подавленным синтезом каротиноидов // ДАН СССР. 1983. Т. 269. С. 1248–1251.
  36. Торопыгина О. А., Махнева З. К., Москаленко А. А. Встраивание каротиноидов в светособирающий комплекс В800‒850 из Chromatium minutissimum // Биохимия. 2003a. Т. 68. С. 1101–1112.
  37. Toropygina O. A., Makhneva Z. K., Moskalenko A. A. Reconstitution of carotenoids into the light-harvesting complex B800–850 of Chromatium minutissimum // Biochemistry (Moscow). 2003a. V. 68. P. 901–911. https://doi.org/10.1023/A:1025755116593
  38. Ashikhmin A., Makhneva Z., Bolshakov M., Moskalenko A. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria // J. Photochem. Photobiol. B. Biol. 2017. V. 170. P. 99–107. https://doi.org/10.1016/j.jphotobiol.2017.03.020
  39. Borland C. F., McGarvey D.J., Truscott T. G., Codgell R. J., Land E. J. Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a ‒ singlet oxygen generation // J. Photochem. Photobiol. B: Biology. 1987. V. 1. P. 93‒101. https://doi.org/10.1016/1011-1344(87)80009-X
  40. Britton G. Functions of intact carotenoids // Carotenoids. Natural Functions / Eds. Britton G., Liaaen-Jensen S., Pfanger H. Birkhauser Verlag, Switzerland, 2008. P. 265–308.
  41. Calvin M. Function of carotenoids in photosynthesis // Nature. 1955. V. 176. P. 1215.
  42. Cogdell R. J., Frank H. A. How carotenoids function in photosynthetic bacteria // Biochim. Biophys. Acta. 1987. V. 895. P. 63–79.
  43. Frank H. A., Cogdell R. J. Photochemistry and function of carotenoids in bacteria // The photochemistry of carotenoids / Eds. Frank H. A., Young A. J., Britton G., Cogdell R. J. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993. P. 36–69.
  44. Frank H. A., Cogdell R. J. Carotenoids in photosynthesis // Photochem. Photobiol. 1996. V. 63. P. 257–264. https://doi.org/10.1111/j.1751–1097.1996.tb03022.x
  45. Freer A., Prince S., Sauer K., Papiz M., Hawthornthwaite-Lawless A., McDermott G., Cogdell R., Isaacs N. W. Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila // Structure. 1996. V. 4. P. 449–462.
  46. Gabrielsen M., Gardiner A. T., Cogdell R. J. Peripheral complexes of purple bacteria // The purple phototrophic bacteria. 2009. V. 28. P. 135–153.
  47. Griffiths M., Sistrom W., Cohen-Bazire G., Stanier R. Functions of carotenoids in photosynthesis // Nature. 1955. V. 176. P. 1211–1215.
  48. Krasnovskii A. A. Photoluminescence of singlet oxygen in solutions of the chlorophylls and pheophytins // Biophysics. 1977. V. 22. P. 960‒962.
  49. Krasnovsky Jr. A. A. Photoluminescence of singlet oxygen in pigment solutions // Photochemi. Photobiol. 1979. V. 29. P. 960‒962. https://doi.org/10.1111/j.1751–1097.1979.tb09255.x
  50. Leiger K., Linnanto J. M., Rätsep M., Timpmann K., Ashikhmin A. A., Moskalenko A. A., Fufina T. Y., Gabdulkhakov A. G., Freiberg A. Controlling photosynthetic excitons by selective pigment photooxidation // J. Phys. Chem. B. 2019. V. 123 P. 29–38.
  51. Löhner A., Carey A. M., Hacking K., Picken N., Kelly S., Cogdell R., Köhler J. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum // Photosynth. Res. 2015. V. 123. P. 23–31.
  52. Makhneva Z., Bolshakov M., Moskalenko A. Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition // Photosynth. Res. 2008. V. 98. P. 633–641.
  53. Makhneva Z. K., Bolshakov M. A., Moskalenko A. A. Carotenoids do not protect bacteriochlorophylls in isolated light-harvesting LH2 complexes of photosynthetic bacteria from destructive interactions with singlet oxygen // Molecules. 2021. V. 26. Art. 5120. https://doi.org/10.3390/molecules26175120
  54. Moskalenko A. A. Karapetyan N. V. Structural role of carotenoids in photosynthetic membranes // Z. Naturforsch. 1996. V. 51. P. 763–771.
  55. Papiz M. Z., Prince S. M., Howard T., Cogdell R. J., Isaacs N. W. The structure and thermal motion of the B800‒850 LH2 complex from Rps. acidophila at 2.0 Е resolution and 100K: New structural features and functionaly relevant motions // Mol. Biol. 2003. V. 326. P. 1523–1538.
  56. Moskalenko A. A., Makhneva Z. K., Fiedor L., Scheer H. Effects of carotenoid inhibition on the photosynthetic RC–LH1 complex in purple sulphur bacterium Thiorhodospira sibirica // Photosynth. Res. 2005. V. 86. P. 71–80. https://doi.org/10.1007/s11120-005-4473-9
  57. Polívka T., Frank H. A. Molecular factors controlling photosynthetic light harvesting by carotenoids // Acc. Chem. Res. 2010. V. 43. P. 1125–1134. https://doi.org/10.1021/ar100030m
  58. Prince S. M., Howard T. D., Myles D. A., Wilkinson C., Papiz M. Z., Freer A. A., Cogdell R. J., Isaacs N. W. Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050 // J. Mol. Biol. 2003. V. 326. P. 307–315.
  59. Prince S. M., Papiz M. Z., Freer A. A., McDermott G., Hawthornthwaite-Lawless A.M., Cogdell R. J., Isaacs N. W. Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions // J. Mol. Biol. 1997. V. 268. P. 412–423.
  60. Uragami C., Sato H., Yukihira N., Fujiwara M., Kosumi D Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum // J. Photoch. Photobiol. A: Chemistry. 2020. V. 400. Art. 112628. https://doi.org/10.1016/j.jphotochem.2020.112628

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a - Absorption spectrum of rhodopin used for embedding (1) and LED emission spectrum; b - Absorption spectra of DFA membranes from cells of Alc. vinosum with inhibited Kar fusion before (1) and after addition of 3 portions of rhodopin to them and subsequent dialysis (2)

Download (98KB)
3. Fig. 2. DFA absorption spectra of the LH2 complex (1), the LH2 complex with incorporated rhodopin (2), and the control LH2 complex from Alc. vinosum (3)

Download (77KB)
4. Fig. 3. HPLC of pigments of the LH2 complex with integrated rhodopin (a) and DFA of the LH2 complex (b) from Alc. vinosum. Peak identification: 1-5 - BHL and its derivatives; 6 - didehydrorhodopin; 7 - rhodopin; 8 - spiriloxanthin; 9 - bacteriopheophytin; 10 - unidentified product of non-carotenoid nature; 11 - ζ-carotene; 12 - phytofluene; 13 - phytoin

Download (77KB)
5. Fig. 4. Changes in the absorption spectrum of the LH2 complex with incorporated rhodopin (a) before (1) and after heating for 5 min at 80°C (2) and the DFA complex of LH2 (b) before (1) and after heating for 2 min (2) and 5 min (3) at 80°C. Spectra (c, d) were normalised: by maximum at 486 nm (c, 1) and at 590 nm (d, 1). Inset: PAGE of the DFA complex LH2 before (1) and after heating for 5 min (2) at 80°C (LH2 - LH2 complex; FP - free pigment zone)

Download (129KB)
6. Fig. 5. Fading curves of BChl850 in DFA membranes (1), LH2 DFA complex (2), control LH2 complex (3) and LH2 complex with integrated rhodopin (4) under 502 nm LED illumination. Inset: difference spectra of ‘control - 30 min of illumination with 502 nm light’ of DFA-membranes (1) and DFA-complex LH2 (2). The spectra were normalised by the maximum of BChl850

Download (80KB)
7. Fig. 6. Changes in the absorption spectrum of the LH2 complex with integrated rhodopin (a) and control LH2 complex (b) under illumination with an LED with an emission maximum of 502 nm: 1 - 0; 2 - 5; 3 - 10; 4 - 15; 5 - 20; 6 - 30 min

Download (122KB)
8. Fig. 7. Effect of illumination with LED with emission maximum of 502 nm on LH2 complex with embedded rhodopin: a - increase of AtsCl absorption (1 - 5; 2 - 10; 3 - 15; 4 - 20; 5 - 30 min of illumination); b - absorption change curves of Qy BHL850 (1) and AtsCl (2)

Download (102KB)

Copyright (c) 2024 Russian Academy of Sciences