Microorganisms of the methane cycle in copepods from a high - Altitude Lake

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microbiome of copepods of the genus Diaptomus from a high-altitude lake at Western Caucasus was investigated using 16S rRNA gene profiling. Aerobic and anaerobic organotrophic microorganisms, methanogenic archaea, and aerobic methane-oxidizing bacteria (MOB) constituted the basis of the microbiome. The symbionts and bacteria of the copepod diet were revealed. Anaerobic organotrophic microorganisms inhabiting the copepods provide the substrates for methanogens, the second most abundant physiological group of prokaryotes in the microbiome. Acetoclastic methanogens of the genus Methanothrix and hydrogenotrophic methanogens of the genera Methanobacterium and Methanoregula were predominant. The methane cycle within the copepods was closed, since their microbiome contained a diverse population of aerobic MOB, among which members of the genera Methylobacter and Methyloparacoccus (class Gammaproteobacteria) predominated. Methane exchange between methanogens and methanotrophs occurs probably in the anoxic environment of the copepod intestine under direct contact of the target microorganisms.

Full Text

Restricted Access

About the authors

A. Yu. Kallistova

Federal Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: kallistoanna@mail.ru
Russian Federation, Moscow, 117312

V. V. Kadnikov

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: kallistoanna@mail.ru
Russian Federation, Moscow, 117312

A. V. Beletsky

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: kallistoanna@mail.ru
Russian Federation, Moscow, 117312

N. V. Pimenov

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: kallistoanna@mail.ru
Russian Federation, Moscow, 117312

References

  1. Каллистова А. Ю., Косякова А. И., Русанов И. И., Кадников В. В., Белецкий А. В., Коваль Д. Д., Юсупов С. К., Зеккер И., Пименов Н. В. Образование метана в пресном озере умеренного пояса в период интенсивного цветения цианобактерий // Микробиология. 2023. Т. 92. С. 477‒489. https://doi.org/10.31857/S0026365623600256
  2. Kallistova A.Yu., Kosyakova A. I., Rusanov I. I., Kadnikov V. V., Beletsky A. V., Koval’ D.D., Yusupov S. K., Zekker I., Pimenov N. V. Methane production in a temperate freshwater lake during an intense cyanobacterial bloom // Microbiology (Moscow). 2023. V. 92. P. 638‒649. http://doi.org/10.1134/S0026261723601586
  3. Пименов Н. В., Калюжная М. Г., Хмеленина В. М., Митюшина Л. Л., Троценко Ю. А. Потребление метана и углекислоты симбиотрофными бактериями в жабрах митилид (Bathymodiolus) гидротермальных полей Рейнбоу и Логачев Срединно-Атлантического хребта // Микробиология. 2002. Т. 71. C. 681‒689.
  4. Pimenov N. V., Kalyuzhnaya M. G., Khmelenina V. N., Mityushina L. L., Trotsenko Yu.A. Utilization of methane and carbon dioxide by symbiotrophic bacteria in gills of Mytilidae (Bathymodiolus) from the Rainbow and Logachev Hydrothermal Fields on the Mid-Atlantic Ridge // Microbiology (Moscow). 2002. V. 71. P. 587–594. https://doi.org/10.1023/A:1020519105618
  5. An D. S., Kim S. G., Ten L. N., Cho C. H. Pedobacter daechungensis sp. nov., from freshwater lake sediment in South Korea // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 69‒72. http://doi.org/10.1099/ijs.0.001529-0
  6. Bižic M., Grossart H.-P., Ionescu D. Methane Paradox // eLS / Chichester: John Wiley & Sons, Ltd., 2020. P. 1‒11. https://doi.org/10.1002/9780470015902.a0028892
  7. Collins M. D., Rodrigues U. M., Dainty R. H., Edwards R. A., Roberts T. A. Taxonomic studies on a psychrophilic Clostridium from vacuum-packed beef: description of Clostridium estertheticum sp. nov. // FEMS Microbiol. Lett. 1992. V. 75. P. 235‒240. http://doi.org/10.1016/0378-1097(92)90410-p
  8. Cui S., Ding R., Wang Q., Li Y., Chen F. Upward migration of calanoid copepods is driven by high food quality in surface waters in an alpine lake // Freshwater Biol. 2023. V. 68. P. 2120‒2130. https://doi.org/10.1111/fwb.14179
  9. Distel D. L., Lee H. K.-W., Cavanaugh C. M. Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 9598‒9602. http://doi.org/10.1073/pnas.92.21.9598
  10. Feng J., Mazzei M., Di Gregorio S., Niccolini L., Vitiello V., Ye Y., Guo B., Yan X., Buttino I. Marine copepods as a microbiome hotspot: revealing their interactions and biotechnological applications // Water. 2023. V. 15. Art. 4203. https://doi.org/10.3390/w15244203
  11. Fischer J. M., Olson M. H., Theodore N., Williamson C. E., Rose K. C., Hwang J. Diel vertical migration of copepods in mountain lakes: the changing role of ultraviolet radiation across a transparency gradient // Limnol. Oceanogr. 2015. V. 60. P. 252–262. https://doi.org/10.1002/lno.10019
  12. Jezbera J., Sharma A. K., Brandt U., Doolittle W. F., Hahn M. W. “Candidatus Planktophila limnetica”, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2864‒2869. https://doi.org/10.1099/ijs.0.010199-0
  13. Jogler M., Chen H., Simon J., Rohde M., Busse H. J., Klenk H. P., Tindall B. J., Overmann J. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 1342‒1349. http://doi.org/10.1099/ijs.0.043133-0
  14. Kallistova A., Oshkin I., Rusanov I., Kadnikov V., Yusupov S., Zekker I., Pimenov N. Profile distribution of methane oxidation in reduced lake sediments suggests utilization of NO-dismutation pathway by aerobic methanotrophic bacteria // Preprint. Available at SSRN: https://ssrn.com/abstract=4805437, http://dx.doi.org/10.2139/ssrn.4805437
  15. Khomyakova M. A., Merkel A. Y., Mamiy D.D, Klyukina A. A., Slobodkin A. I. Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia // Front. Microbiol. 2023. V. 14. Art. 1214631. http://doi.org/10.3389/fmicb.2023.1214631
  16. Oksanen J., Simpson G., Blanchet F., Kindt R., Legendre P., Minchin P., O’Hara R., Solymos P., Stevens M., Szoecs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., De Caceres M., Durand S., Evangelista H., FitzJohn R., Friendly M., Furneaux B., Hannigan G., Hill M., Lahti L., McGlinn D., Ouellette M., Ribeiro Cunha E., Smith T., Stier A., Ter Braak C., Weedon J. Vegan: Community Ecology Package. R package version 2.6-4, 2022. https://CRAN.R-project.org/package=vegan
  17. Protasov E., Nonoh J. O., Kästle Silva J. M., Mies U. S., Hervé V., Dietrich C., Lang K., Mikulski L., Platt K., Poehlein A., Köhler-Ramm T., Miambi E., Boga H. I., Feldewert C., Ngugi D. K., Plarre R., Sillam-Dussès D., Šobotník J., Daniel R., Brune A. Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods // Front. Microbiol. 2023. V. 14. Art. 1281628. http://doi.org/10.3389/fmicb.2023.1281628
  18. Reis P. C.J., Tsuji J. M., Weiblen C., Schiff S. L., Scott M., Stein L. Y., Neufeld J. D. Enigmatic persistence of aerobic methanotrophs in oxygen-limiting freshwater habitats // ISME J. V. 18. Art. wrae041. http://doi.org/10.1093/ismejo/wrae041
  19. Sadaiappan B., PrasannaKumar C., Nambiar V. U., Subramanian M., Gauns M. U. Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes // Sci. Rep. 2021. V. 11. Art. 3312. https://doi.org/10.1038/s41598-021-82482-z
  20. Samad M. S., Lee H. J., Cerbin S., Meima-Franke M., Bodelier P. L.E. Niche differentiation of host-associated pelagic microbes and their potential contribution to biogeochemical cycling in artificially warmed lakes // Front. Microbiol. 2020. V. 11. Art. 582. http://doi.org/10.3389/fmicb.2020.00582
  21. Sheu S. Y., Sheu D. S., Sheu F. S., Chen W. M. Gemmobacter tilapiae sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater pond // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 1550‒1556. https://doi.org/10.1099/ijs.0.044735-0
  22. Vakati V., Fuentes-Reines J.M., Wang P., Wang J., Dodsworth S. A summary of Copepoda: synthesis, trends, and ecological Impacts // J. Oceanol. Limnol. 2023. V. 41. P. 1050‒1072. https://doi.org/10.1007/s00343-022-1309-9
  23. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. https://ggplot2.tidyverse.org
  24. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. // Int. J. Syst. Bacteriol. 1990. V. 40. P. 384‒398. https://doi.org/10.1099/00207713-40-4-384
  25. Yan Z. F., Lin P., Won K. H., Yang J. E., Li CT., Kook M., Yi T. H. Altererythrobacter deserti sp. nov., isolated from desert soil // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 3806‒3811. https://doi.org/10.1099/ijsem.0.002197
  26. Zhang G. Q., Yang L. L., Liu Q., Liu H. C., Zhou Y. G., Xin Y. H. Flavobacterium restrictum sp. nov., Flavobacterium rhamnosiphilum sp. nov., and Flavobacterium zepuense sp. nov. isolated from glaciers // Int. J. Syst. Evol Microbiol. 2020. V. 70. P. 4583‒4590. https://doi.org/10.1099/ijsem.0.004317.
  27. Zhilina T. N., Appel R., Probian C., Brossa E. L., Harder J., Widdel F., Zavarzin G. A. Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake // Arch. Microbiol. 2004. V. 182. P. 244‒253. https://doi.org/10.1007/s00203-004-0722-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (147KB)
3. Fig. 1. External appearance of copepods of the genus Diaptomus, living in the water column of Lake Shobaidak-Kel. The scale mark corresponds to 500 µm.

Download (219KB)
4. Fig. 2. Relative abundance of prokaryotes (% of total 16S rRNA gene sequences) dominant in the copepod microbiome.

Download (436KB)
5. Fig. 3. Relative abundance of methanogenic archaea (MA) and aerobic methane-oxidizing bacteria (MOB) in the copepod microbiome and in background water and sediment samples of Lake Shobaidak-Kel (% of the total number of 16S rRNA gene sequences).

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences