Genomic and functional analysis of a representative of the rare genus Krasilnikoviella ‒ Strain YrIIa5 with multiple antibiotic resistance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The increasing interest in the so-called “rare genera” of actinomycetes is associated with insufficiently studied of their potential as producers of valuable metabolites, primarily antibiotics. The use of selective methods made it possible to isolate the YrIIa5 strain from the soil collected near the “Dutch Fortress” (Rostov, Yaroslavl Region). Phylogenetic analysis based on the similarity of the 16S rRNA genes and five housekeeping genes (MLSA) allowed us to assign the isolate to the genus Krasilnikoviella. Genome analysis revealed many genes responsible for resistance to a wide range of antibiotics, which was confirmed by studying the strain for sensitivity to antimicrobial compounds using the agar diffusion method.

Full Text

Restricted Access

About the authors

A. R. Kiriy

Sirius University of Science and Technology, Scientific Center for Translational Medicine

Email: metrim@gmail.com
Russian Federation, Sochi, 354340

Yu. V. Zakalyukina

Sirius University of Science and Technology, Scientific Center for Translational Medicine; Lomonosov Moscow State University

Email: metrim@gmail.com
Russian Federation, Sochi, 354340; Moscow, 119234

Yu. A. Buyuklyan

Sirius University of Science and Technology, Scientific Center for Translational Medicine

Email: metrim@gmail.com
Russian Federation, Sochi, 354340

M. V. Biryukov

Sirius University of Science and Technology, Scientific Center for Translational Medicine; Lomonosov Moscow State University; Center of Life Sciences, Skolkovo Institute of Science and Technology

Author for correspondence.
Email: metrim@gmail.com
Russian Federation, Sochi, 354340; Moscow, 119234; Moscow, 121205

References

  1. Белик А. Р., Закалюкина Ю. В., Алферова В. А., Буюклян Ю. А., Остерман И. А., Бирюков М. В. Streptomyces phaeochromogenes БВ-204 – штамм-продуцент антрахинона К-1115А, нового ингибитора биосинтеза белка // Acta Naturae. 2024. Т. 16. С.14–23.
  2. Belik A. R., Zakalyukina Yu.V., Alferova V. A., Buyuklyan Y. A., Osterman I. A., Biryukov M. V. Streptomyces phaeochromogenes BV-204, K-1115А anthraquinone-producing strain: a new protein biosynthesis inhibitor // Acta Naturae. 2024. V. 16. P.14–23.
  3. Кудрявцева Е. А., Александров С. В. Гидролого-гидрохимические основы первичной продуктивности и районирование Российского сектора Гданьского бассейна Балтийского моря // Океанология. 2019. Т. 59. С. 56‒71.
  4. Kudryavtseva E. A., Aleksandrov S. V. Hydrological and hydrochemical underpinnings of primary production and division of the Russian sector in the Gdansk basin of the Baltic Sea // Oceanology. 2019. V. 59. P. 49‒65.
  5. Cинева О. Н., Терехова Л. П. Направленное выделение актиномицетов редких родов из почвы // Антибиотики и химиотерапия. 2015. Т. 60. № 7‒8. С. 27–33.
  6. Sineva O. N., Terekhova L. P. Selective isolation of rare actinomycetes from soil // Antibiot. Chemother. 2015. V. 60. № 7‒8. P. 27‒33.
  7. Фелькер И. Г., Гордеева Е. И., Ставицкая Н. В., Першина В. А., Батыршина Я. Р. Перспективы и препятствия для клинического применения ингибиторов эффлюксных помп Mycobacterium tuberculosis // Биол. мембраны. 2021. Т. 38. С. 317–339.
  8. Cesare Di M., Kaplan E., Rendon J., Gerbaud G., Valimehr S., Gobet A., Ngo T. A. T., Chaptal V., Falson P., Martinho M., Dorlet P., Hanssen E., Jault J. M., Orelle C. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains // J. Biol. Chem. 2024. V. 300. Art. 105546.
  9. Elkins C. A., Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops // J. Bacteriol. 2002. V. 184. P. 6490–6498.
  10. Fanelli G., Pasqua M., Colonna B., Prosseda G., Grossi M. Expression profile of multidrug resistance efflux pumps during intracellular life of adherent-invasive Escherichia coli strain LF82 // Front. Microbiol. 2020. V. 11. Art. 1935.
  11. Jiang Y., Wiese J., Cao Y. R., Xu L. H., Imhoff J. F., Jiang C. L. Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 1599–1602.
  12. Nagakubo S., Nishino K., Hirata T., Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC // J. Bacteriol. 2002. V. 184. P. 4161–4167.
  13. Ngamcharungchit C., Chaimusik N., Panbangred W., Euanorasetr J., Intra B. Bioactive metabolites from terrestrial and marine actinomycetes // Molecules. 2023. V. 28. Art. 5915.
  14. Nishijima M., Tazato N., Handa Y., Umekawa N., Kigawa R., Sano C., Sugiyama J. Krasilnikoviella muralis gen. nov., sp. nov., a member of the family Promicromonosporaceae, isolated from the Takamatsuzuka Tumulus stone chamber interior and reclassification of Promicromonospora flava as Krasilnikoviella flava comb. nov. // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 294–300.
  15. Ohki R., Murata M. Bmr3, a third multidrug transporter gene of Bacillus subtilis // J. Bacteriol. 1997. V. 179. P. 1423–1427.
  16. Parra J., Beaton A., Seipke R. F., Wilkinson B., Hutchings M. I., Duncan, K.R. Antibiotics from rare actinomycetes, beyond the genus Streptomyces // Curr. Opin. Microbiol. 2023. V. 76. Art. 102385.
  17. Saidijam M., Benedetti G., Ren Q., Xu Z., Hoyle C., Palmer S., Ward A., Bettaney K., Szakonyi G., Meuller J., Morrison S., Pos MK.., Butaye P., Walraven K., Langton K., Herbert R. B., Skurray RA.., Paulsen I. T., O’Reilly J., Rutherford N. G., Brown M. H., Bill R. M., Henderson P. J.F. Microbial drug efflux proteins of the major facilitator superfamily // Curr. Drug Targets. 2006. V. 7. P. 793–811.
  18. Schumann P., Stackebrand E. Bergey’s Manual of systematics of archaea and bacteria. Promicromonospora. 1st ed. // Ed. Whitman W. B. Hoboken: Wiley, 2015. P. 1–10.
  19. Seemann T. Prokka: rapid prokaryotic genome annotation // Bioinform. 2014. V. 30. P. 2068–2069.
  20. Sharma A., Sharma R., Bhattacharyya T., Bhando T., Pathania R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily MFS transporter ‒ AbaF // J. Antimicrob. Chemother. 2017. V. 72. P. 68–74.
  21. Subramani R., Sipkema D. Marine rare Actinomycetes: a promising source of structurally diverse and unique novel natural products // Marine Drugs. 2019. V. 17. Art. 249.
  22. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees // Mol. Biol. Evol. 1993. V. 10. P. 512–526.
  23. Volynkina I. A., Zakalyukina Y. V., Alferova V. A., Belik A. R., Yagoda D. K., Nikandrova A. A., Buyuklyan Y. A., Udalov A. V., Golovin E. V., Kryakvin M. A., Lukianov D. A., Biryukov M. V., Sergiev P. V., Dontsova O. A., Osterman I. A. Mechanism-based approach to new antibiotic producers screening among actinomycetes in the course of the citizen science project // Antibiotics (Basel). 2022. V. 11. Art. 1198.
  24. Zakalyukina Y. V., Osterman I. A., Wolf J., Neumann-Schaal M., Nouioui I., Biryukov M. V. Amycolatopsis camponoti sp. nov., new tetracenomycin-producing actinomycete isolated from carpenter ant Camponotus vagus // Antonie van Leeuwenhoek. 2022. V. 115. P. 533–544.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogram based on six concatenated sequences of housekeeping genes (16S rRNA, atpD, gyrB, recA, rpoB, trpB, 10751 bp in total), constructed by the maximum likelihood method with the highest log-likelihood (‒54397.04). The scale bar corresponds to 5 substitutions per 100 nucleotides. Clusters with a high level of confidence (bootstrap >70%), also confirmed by the Minimum Evolution, UPGMA, Neighbor-Joining methods in the MEGA v.11 program, are marked with an asterisk.

Download (225KB)
3. Fig. 2. Electron micrographs of the strain Krasilnikoviella sp. YrIIa5 after 48 hours (a) and 6 days (b) of incubation on Organic 79 medium at 28°C.

Download (130KB)

Copyright (c) 2025 Russian Academy of Sciences