Низкоуглеродные компоненты моторных топлив на основе оксидов углерода (обзор)
- Authors: Паланкоев Т.А.1, Кузнецов П.С.1, Беденко С.П.1, Дементьев К.И.1
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Issue: Vol 64, No 3 (2024)
- Pages: 185-203
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655549
- DOI: https://doi.org/10.31857/S0028242124030012
- EDN: https://elibrary.ru/LHNPGW
- ID: 655549
Cite item
Abstract
Обзор обобщает актуальный прогресс в области получения полиоксоалкиленовых эфиров спиртов и эфиров щавелевой кислоты, содержит обсуждение перспектив их практического применения в качестве моторных топлив, а также способов модификации структуры этих оксигенатов для управления их эксплуатационными свойствами.
Full Text

About the authors
Тимур Ахметович Паланкоев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-9880-6755
к.х.н.
Russian Federation, МоскваПетр Сергеевич Кузнецов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Author for correspondence.
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-3140-3035
к.х.н.
Russian Federation, МоскваСтанислав Павлович Беденко
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-8926-0818
к.х.н.
Russian Federation, МоскваКонстантин Игоревич Дементьев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-8102-8624
к.х.н.
Russian Federation, МоскваReferences
- Rodionova M.V., Poudyal R.S., Tiwari I., Voloshin R.A., Zharmukhamedov S.K., Nam H.G., Zayadan B.K., Bruce B.D., Hou H.J., Allakhverdiev S.I. Biofuel production: challenges and opportunities // Int. J. Hydrogen Energy. 2017. V. 42. № 12. P. 8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125
- Калинина М.А., Куликов Л.А., Чередниченко К.А., Максимов А.Л., Караханов Е.А. Влияние сульфо-групп в структуре пористых ароматических каркасов на активность платиновых катализаторов в гидродеоксигенации компонентов бионефти // Нефтехимия. 2021. Т. 61. № 5. С. 692–703. https://doi.org/10.31857/S0028242121050129 [Kalinina M.A., Kulikov L.A., Cherednichenko K.A., Maxi-mov A.L., Karakhanov E.A. The effect of sulfonate groups in the structure of porous aromatic frameworks on the activity of platinum catalysts towards hydrodeoxygenation of biofuel components // Petrol. Chemistry. 2021. V. 61. № 9. P. 1061–1070. https://doi.org/10.1134/S0965544121090115]
- Mardiana S., Azhari N.J., Ilmi T., Kadja G.T. Hierarchical zeolite for biomass conversion to biofuel: a review // Fuel. 2021. V. 309. ID 122119. https://doi.org/10.1016/j.fuel.2021.122119
- Luque R., Clark J.H. Biodiesel-like biofuels from simultaneous transesterification/esterification of waste oils with a biomass-derived solid acid catalyst // ChemCatChem. 2011. V. 3. № 3. P. 594–597. https://doi.org/10.1002/cctc.201000280
- Li X., Luo X., Jin Y., Li J., Zhang H., Zhang A., Xie J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels // Renewable Sustainable Energy Rev. 2018. V. 82. P. 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091
- Ma F., Hanna M.A. Biodiesel production: a review // Bioresour. Technol. 1999. V. 70. № 1. P. 1–15. https://doi.org/10.1016/s0960-8524(99)00025-5
- Pinto A.C., Guarieiro L.L., Rezende M.J., Ribeiro N.M., Torres E.A., Lopes W.A., Pereira P.A.D.P., Andrade J.B.D. Biodiesel: an overview // J. Braz. Chem. Soc. 2005. V. 16. № 6. P. 1313–1330. https://doi.org/10.1590/S0103-50532005000800003
- Balat M., Balat H. Progress in biodiesel processing // Appl. Energy. 2010. V. 87. № 6. P. 1815–1835. https://doi.org/10.1016/j.apenergy.2010.01.012
- De Oliveira F.C., Coelho S.T. History, evolution, and environmental impact of biodiesel in Brazil: a review // Renewable Sustainable Energy Rev. 2017. V. 75. P. 168–179. https://doi.org/10.1016/j.rser.2016.10.060
- McMillan J.D. Bioethanol production: status and prospects // Renewable Energy. 1997. V. 10. № 2–3. P. 295–302. https://doi.org/10.1016/0960-1481(96)00081-x
- Aditiya H.B., Mahlia T.M.I., Chong W.T., Nur H., Sebayang A.H. Second generation bioethanol production: a critical review // Renewable Sustainable Energy Rev. 2016. V. 66. P. 631–653. https://doi.org/10.1016/j.rser.2016.07.015
- Sarkar N., Ghosh S.K., Bannerjee S., Aikat K. Bioethanol production from agricultural wastes: an overview // Renewable Energy. 2012. V. 37. № 1. P. 19–27. https://doi.org/10.1016/j.renene.2011.06.045
- Kumar M., Gayen K. Developments in biobutanol production: new insights // Appl. Energy. 2011. V. 88. № 6. P. 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055
- Kushwaha D., Srivastava N., Mishra I., Upadhyay S.N., Mishra P.K. Recent trends in biobutanol production // Rev. Chem. Eng. 2019. V. 35. № 4. P. 475–504. https://doi.org/10.1515/revce-2017-0041
- IEA Renewables 2021. URL: https://www.iea.org/reports/renewables-2021 (accessed December 25, 2023).
- Bulushev D.A., Ross J.R.H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review // Catal. Today. 2011. V. 171. № 1. P. 1–13. https://doi.org/10.1016/j.cattod.2011.02.005
- Xiu S., Shahbazi A. Bio-oil production and upgrading research: a review // Renewable Sustainable Energy Rev. 2012. V. 16. № 7. P. 4406–4414. https://doi.org/10.1016/j.rser.2012.04.028
- Isahak W.N.R.W., Hisham M.W.M., Yarmo M.A., Hin T.Y.Y. A review on bio-oil production from biomass by using pyrolysis method // Renewable Sustainable Energy Rev. 2012. V. 16. № 8. P. 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
- Паланкоев Т.А., Дементьев К.И., Хаджиев С.Н. Перспективные процессы производства биотоплив типа “drop in“ и продуктов нефтехимии из возобновляемого сырья (Обзор) // Нефтехимия. 2019. Т. 59. № 3. С. 315–324. https://doi.org/10.1134/s0028242119030110 [Palankoev T.A., Dementiev K.I., Khadzhiev S.N. Promising processes for producing drop-in biofuels and petrochemicals from renewable feedstock // Petrol. Chemistry. 2019. V. 59. P. 438–446. https://doi.org/10.1134/S096554411904011X ]
- Hoekman S.K., Broch A., Robbins C., Ceniceros E., Natarajan M. Review of biodiesel composition, properties, and specifications // Renewable Sustainable Energy Rev. 2012. V. 16. № 1. P. 143–169. https://doi.org/10.1016/j.rser.2011.07.143
- Lan T., Wang Y., Ali R., Liu H., Liu X., He M. Prediction and measurement of critical properties of gasoline surrogate fuels and biofuels // Fuel Process. Technol. 2022. V. 228. P. 107156. https://doi.org/10.1016/j.fuproc.2021.107156
- Obergruber M., Hönig V., Procházka P., Kučerová V., Kotek M., Bouček J., Mařík J. Physicochemical properties of biobutanol as an advanced biofuel // Materials. 2021. V. 14. № 4. P. 1–21. https://doi.org/10.3390/ma14040914
- Cornejo A., Barrio I., Campoy M., Lázaro J., Navarrete B. Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: a critical review // Renewable Sustainable Energy Rev. 2017. V. 79. P. 1400–1413. https://doi.org/10.1016/j.rser.2017.04.005
- Ong H.C., Chen W.H., Farooq A., Gan Y.Y., Lee K.T., Ashokkumar V. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review // Renewable Sustainable Energy Rev. 2019. V. 113. P. 109266. https://doi.org/10.1016/j.rser.2019.109266
- Geller D.P., Goodrum J.W. Effects of specific fatty acid methyl esters on diesel fuel lubricity // Fuel. 2004. V. 83. № 17–18. P. 2351–2356. https://doi.org/10.1016/j.fuel.2004.06.004
- Doll K.M., Moser B.R., Erhan S.Z. Surface tension studies of alkyl esters and epoxidized alkyl esters relevant to oleochemically based fuel additives // Energy and Fuels. 2007. V. 21. № 5. P. 3044–3048. https://doi.org/10.1021/ef700213z
- Musyoka S.K., Khalil A.S.G., Ookawara S.A., Elwardany A.E. Effect of C4 alcohol and ester as fuel additives on diesel engine operating characteristics // Fuel. 2023. V. 341. P. 127656. https://doi.org/10.1016/j.fuel.2023.127656
- Szori M., Giri B.R., Wang Z., Dawood A.E., Viskolcz B., Farooq A. Glycerol carbonate as a fuel additive for a sustainable future // Sustain. Energy Fuels. 2018. V. 2. № 10. P. 2171–2178. https://doi.org/10.1039/c8se00207j
- Dahmen M., Marquardt W. Model-based design of tailor-made biofuels // Energy Fuels. 2016. V. 30. № 2. P. 1109–1134. https://doi.org/10.1021/ACS.ENERGYFUELS.5B02674
- Fagan P.J., Korovessi E., Manzer L.E., Mehta R., Thomas S.M. Preparation of levulinic acid esters and formic acid esters from biomass and olefins / Patent JP № 2003080571A1. Appl. atd. 20.05.2014.
- Manzer L. Preparation of levulinic acid esters from alpha-angelica lactone and olefins // Patent US № 2005075405A1.2005. Appl. atd. 28.01.2005.
- Jungbluth H., Gottlieb K., Wessendorf R. Flüssige kraftstoffe. Liquid fuels.
- Christensen E., Williams A., Paul S., Burton S., McCormick R.L. Properties and performance of levulinate esters as diesel blend components // Energy Fuels. 2011. V. 25. № 11. P. 5422–5428. https://doi.org/10.1021/EF201229J
- Rae A., Hodgson W. Fuel composition // Patent GB № 2003002696A1. 2001. Appl. atd. 08.03.2001.
- Groves A.P., Morley C., Smith J., Stevenson P.A. Fuel compositions comprising a С4–С8 alkyl levulinate // Patent WO № 2005044960 A1. 2004. Appl. atd. 08.11.2004.
- Haan J.P., Louis J.J. J., Stevenson P.A. Fuel compositions // Patent WO № 2007012585 A1. 2007. Appl. atd. 19.07.2006.
- Joshi H., Moser B.R., Toler J., Smith W.F., Walker T. Ethyl levulinate: a potential bio-based diluent for biodiesel which improves cold flow properties // Biomass Bioenergy. 2011. V. 35. № 7. P. 3262–3266. https://doi.org/10.1016/j.biombioe.2011.04.020
- Peters R. Identification and thermodynamic analysis of reaction pathways of methylal and OME-formation // Energy. 2017. V. 138. P. 1221–1246. https://doi.org/10.1016/j.energy.2017.07.050
- Xia C., Song H., Chen J., Li. Z. Method for preparing polyoxymethylene dimethyl ethers by acetalation reaction of formaldehyde with methanol // Patent US № 20110313202 A1. 2011. Appl. atd. 01.09.2011.
- Xia C., Song H., Chen J., Li. Z., Jin F., Kang M. System and method for continuously producing polyoxumethylene dimethyl ethers // Patent US № 9169186 B2. 2012. Appl. atd. 18.10.2012.
- Qian M., Liauw M.A., Emig G. Formaldehyde synthesis from methanol over silver catalysts // Appl. Catal., A. 2003. V. 238. № 2. P. 211–222. https://doi.org/10.1016/S0926-860X(02)00340-X
- Meunier N., Chauvy R., Mouhoubi S., Thomas D., De Weireld G. Alternative production of methanol from industrial CO2 // Renewable Energy. 2020. V. 146. P. 1192–1203. https://doi.org/10.1016/j.renene.2019.07.010
- Simon Araya S., Liso V., Cui X., Li N., Zhu J., Sahlin S.L., Jensen S.H., Nielsen M.P., Kær S.K. A review of the methanol economy: the fuel cell route // Energies. 2020. V. 13. № 3. P. 596. https://doi.org/10.3390/EN13030596
- Guo W., Yin Y., Pi N., Liu F., Tu S., Ye L. Investigation on a novel mixed dialkyl oxalate system as an oxygenated fuel additive // Energy Fuels. 2020. V. 34. № 4. P. 4213–4220. https://doi.org/10.1021/acs.energyfuels.9b04536
- Riemenschneider W., Tanifuji M. Oxalic acid // Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA, 2000. P. 1–14. https://doi.org/10.1002/14356007.a18_247
- Lautenschütz L., Oestreich D., Seidenspinner P., Arnold U., Dinjus E., Sauer J. Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers // Fuel. 2016. V. 173. P. 129–137. https://doi.org/10.1016/j.fuel.2016.01.060
- Qi J., Hu Y., Niu J., Ma W., Jiang S., Wang Y., Zhang X., Jiang Y. Evaluation of polyoxymethylene dimethyl ethers as a new type of diesel additives // Fuel. 2018. V. 234. P. 135–141. https://doi.org/10.1016/J.FUEL.2018.07.007
- Han D.Y., Cao Z.B., Shi W.W., Deng X.D., Yang T.Y. Influence of polyoxymethylene dimethyl ethers on diesel fuel properties // Energy Sources, Part A. 2016. V. 38. № 18. P. 2687–2692. https://doi.org/10.1080/15567036.2015.1110646
- Bartholet D.L., Arellano-Treviño M.A., Chan F.L., Lucas S., Zhu J., John P.C.S., Alleman T.L., McEnally C.S., Pfefferle L.D., Ruddy D.A., Windom B. Property predictions demonstrate that structural diversity can improve the performance of polyoxymethylene ethers as potential bio-based diesel fuels // Fuel. 2021. V. 295. https://doi.org/10.1016/j.fuel.2021.120509
- Kang M.R., Song H.Y., Jin F. X., Chen J. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers // J. Fuel Chem. Technol. 2017. V. 45. № 7. P. 837–845. https://doi.org/10.1016/s1872-5813(17)30040-3
- Liu Q., Zhang X., Ma B., Lin Y. Densities and viscosities for binary mixtures of polyoxymethylene dimethyl ethers with different CH2O chain length n = 2, 3, 4 at different temperatures // J. Chem. Thermodyn. 2017. V. 113. P. 151–161. https://doi.org/10.1016/j.jct.2017.06.002
- Liu J., Wang L., Wang P., Sun P., Liu H., Meng Z., Zhang L., Ma H. An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines // Fuel. 2022. V. 318. P. 123582. https://doi.org/10.1016/j.fuel.2022.123582
- ГОСТ 32511-2013 „Топливо дизельное ЕВРО. Технические условия“. URL: https://kpon.ru/assets/manager/lab/GOST_32511-2013_Toplivo_dizelnoe_tu.pdf (accessed December 25, 2023).
- Deutsch D., Oestreich D., Lautenschütz L., Haltenort P., Arnold U., Sauer J. High purity oligomeric oxymethylene ethers as diesel fuels // Chem. Ing. Tech. 2017. V. 89. № 4. P. 486–489. https://doi.org/10.1002/cite.201600158
- Omari A., Heuser B., Pischinger S., Rüdinger C. Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines // Appl. Energy. 2019. V. 239. P. 1242–1249. https://doi.org/10.1016/j.apenergy.2019.02.035
- Omari A., Heuser B., Pischinger S. Potential of oxymethylenether-diesel blends for ultra-low emission engines // Fuel. 2017. V. 209. P. 232–237. https://doi.org/10.1016/j.fuel.2017.07.107
- Badia J.H., Ramírez E., Bringué R., Cunill F., Delgado J. New octane booster molecules for modern gasoline composition // Energy Fuels. 2021. V. 35. № 14. P. 10949–10997. https://doi.org/10.1021/acs.energyfuels.1c00912
- Joseph S., Sathishkumar R., Mahapatra S., Desiraju G.R. Crystal packing and melting temperatures of small oxalate esters: The role of C–H2O hydrogen bonding // Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. V. 67. № 6. P. 525–534. https://doi.org/10.1107/S0108768111037487
- Xiamen University. The new oxygenated fuel of oxalic acid ester or fuel oil additive and its application // Patent CN № 107118814A. Appl. atd. 06.06.2017.
- Serdari A., Lois E., Stournas S. Impact of esters of mono- and dicarboxylic acids on diesel fuel quality // Ind. Eng. Chem. Res. 1999. V. 38. № 9. P. 3543–3548. https://doi.org/10.1021/ie9900115
- Bu L., Ciesielski P.N., Robichaud D.J., Kim S., McCormick R.L., Foust T.D., Nimlos M.R. Understanding trends in autoignition of biofuels: homologous series of oxygenated C5 molecules // J. Phys. Chem. A. 2017. V. 121. № 29. P. 5475–5486. https://doi.org/10.1021/acs.jpca.7b04000
- NIST Chemistry WebBook. URL: https://webbook.nist.gov/chemistry/ (accessed December 25, 2023).
- PubChem. URL: https://pubchem.ncbi.nlm.nih.gov/ (дата обращения: 5.12.2023).
- CompTox Chemicals Dashboard. URL: https://comptox.epa.gov/dashboard/ (дата обращения: 5.12.2023).
- Baranowski C.J., Bahmanpour A.M., Kröcher O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review // Appl. Catal., B. 2017. V. 217. P. 407–420. https://doi.org/10.1016/j.apcatb.2017.06.007
- Li G., Ning J., Xu C., Qiu Q., Ma H., Chen L. Identification of reaction path for the synthesis of polyoxymethylene dimethyl ethers from methanol and paraformaldehyde catalyzed by Al-MCM-41 zeolite // Comput. Theor. Chem. 2021. V. 1200. P. 113248. https://doi.org/10.1016/j.comptc.2021.113248
- Zhao Y., Xu Z., Chen H., Fu Y., Shen J. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers // J. Energy Chem. 2013. V. 22. № 6. P. 833–836. https://doi.org/10.1016/S2095-4956(14)60261-8
- Liu H., Bai Z., Liu Y., Guo X., Fu Y. Prediction of the vapor–liquid equilibrium of formaldehyde–water–trioxane ternary system by the conductor-like screening model for real solvents // Int. J. Chem. Eng. Appl. 2017. V. 8. № 2. P. 82–86. https://doi.org/10.18178/ijcea.2017.8.2.634
- Detcheberry M., Destrac P., Meyer X.M. Condoret J.S. Phase equilibria of aqueous solutions of formaldehyde and methanol: improved approach using UNIQUAC coupled to chemical equilibria // Fluid Phase Equilib. 2015. V. 392. P. 84–94. https://doi.org/10.1016/j.fluid.2015.02.011
- Albert M., Coto García B., Kuhnert C., Peschla R., Maurer G. Vapor–liquid equilibrium of aqueous solutions of formaldehyde and methanol // AIChE J. 2000. V. 46. № 8. P. 1676–1687. https://doi.org/10.1002/aic.690460818
- Diep B.T., Wainwright M.S. Thermodynamic equilibrium constants for the methanol–dimethyl ether–water system // J. Chem. Eng. Data. 1987. V. 32. № 3. P. 330–333. https://doi.org/10.1021/je00049a015
- Burger J., Ströfer E., Hasse H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane // Ind. Eng. Chem. Res. 2012. V. 51. № 39. P. 12751–12761. https://doi.org/10.1021/ie301490q
- Drunsel J.O., Renner M., Hasse H. Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis // Chem. Eng. Res. Des. 2012. V. 90. № 5. P. 696–703. https://doi.org/10.1016/j.cherd.2011.09.014
- Oestreich D., Lautenschütz L., Arnold U., Sauer J. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde // Chem. Eng. Sci. 2017. V. 163. P. 92–104. https://doi.org/10.1016/j.ces.2016.12.037
- Schmitz N., Burger J., Hasse H. Reaction Kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions // Ind. Eng. Chem. Res. 2015. V. 54. № 50. P. 12553–12560. https://doi.org/10.1021/acs.iecr.5b04046
- Wu Q., Wang M., Hao Y., Li H., Zhao Y., Jiao Q. Synthesis of polyoxymethylene dimethyl ethers catalyzed by Bronsted acid ionic liquids with alkanesulfonic acid groups // Ind. Eng. Chem. Res. 2014. V. 53. P. 16254–16260. https://doi.org/10.1021/ie502409t
- Qi J., Hu Y., Jiang S., Ma W., Yang Z., Wang Y. Lewis acids promote the catalytic selectivity to polyoxymethylene dimethyl ethers PODE3,4 // Fuel. 2019. V. 245. P. 521–527. https://doi.org/10.1016/j.fuel.2019.02.093
- Cao C., Liu G., Xin F., Lei Q., Qin X., Yin Y., Chen H., Ullah A. Analyses and rates of reactions influenced by water in synthesis of polyoxymethylene dimethyl ethers from trioxane and methylal // Chem. Eng. Sci. 2022. V. 248. P. 117136. https://doi.org/10.1016/j.ces.2021.117136
- Maiwald M., Fischer H.H., Ott M., Peschla R., Kuhnert C., Kreiter C.G., Maurer G., Hasse H. Quantitative NMR spectroscopy of complex liquid mixtures: methods and results for chemical equilibria in formaldehyde–water–methanol at temperatures up to 383 K // Ind. Eng. Chem. Res. 2003. V. 42. № 2. P. 259–266. https://doi.org/10.1021/IE0203072
- Voggenreiter J., Burger J. Side products in the water-tolerant synthesis of poly(oxymethylene) dimethyl ethers: formation kinetics and implications for process design // Ind. Eng. Chem. Res. 2021. V. 60. № 6. P. 2418–2429. https://doi.org/10.1021/ACS.IECR.0C05780
- Klokic S., Hochegger M., Schober S., Mittelbach M. Investigations on an efficient and environmentally benign poly(oxymethylene) dimethyl ether (OME3–5) fuel synthesis // Renewable Energy. 2020. V. 147. P. 2151–2159. https://doi.org/10.1016/J.RENENE.2019.10.004
- Wang R., Wu Z., Qin Z., Chen C., Zhu H., Wu J., Chen G., Fan W., Wang J. Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene // Catal. Sci. Technol. 2016. V. 6. № 4. P. 993–997. https://doi.org/10.1039/c5cy01854d
- Song H., Kang M., Jin F., Wang G., Li Z., Chen J. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers // Chin. J. Catal. 2017. V. 38. № 5. P. 853–861. https://doi.org/10.1016/S1872-2067(17)62816-X
- Zhang C., Zhang T., Zhang J., Zhang J., Li R. Controllable synthesis of polyoxymethylene dimethyl ethers by ionic liquids encapsulated in mesoporous SBA-16 // Chin. J. Chem. Eng. 2021. V. 32. P. 175–182. https://doi.org/10.1016/j.cjche.2020.09.016
- Sheldon R.A., Arends I., Hanefeld U. Green Chemistry and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA, 2007. P. 434.
- Wang L., Wu W., Chen T., Chen Q. Ion-exchange resin-catalyzed synthesis of polyoxymethylene dimethyl ethers: a practical and environmentally friendly way to diesel additive // Chem. Eng. Commun. 2013. V. 201. № 5. P. 37–41. https://doi.org/10.1080/00986445.2013.778835
- Li X., Cao J., Nawaz M.A., Liu D. Synergy of Lewis and Brønsted acid sites for polyoxymethylene dimethyl ether synthesis from methanol and formaldehyde solution over Zr4+ modified sulfonated resin // Fuel. 2021. V. 289. P. 119867. https://doi.org/10.1016/j.fuel.2020.119867
- Fang X., Chen J., Ye L., Lin H., Yuan Y. Efficient synthesis of poly (oxymethylene) dimethyl ethers over PVP-stabilized heteropolyacids through self-assembly // Sci. China: Chem. 2015. V. 58. № 1. P. 131–138. https://doi.org/10.1007/s11426-014-5257-x
- Wang L., Wu W.-T., Chen T., Chen Q., He M.-Y. Ion-exchange resin-catalyzed synthesis of polyoxymethylene dimethyl ethers: a predictical and environmentallly friendly way to diesel additive // Chem. Eng. Commun. 2014. V. 201. № 5. P. 709–717. https://doi.org/10.1080/00986445.2013.778835
- Zhang J., Tang B., Fang D., Liu D. Polyoxymethylene dimethyl ethers from methylal and trioxane over modified cation-exchange resin // Asian J. Chem. 2014. V. 26. № 19. P. 6469–6473. https://doi.org/10.14233/ajchem.2014.16457
- Lautenschütz L., Oestreich D., Haltenort P., Arnold U., Dinjus E., Sauer J. Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites // Fuel Process. Technol. 2017. V. 165. P. 27–33. https://doi.org/10.1016/j.fuproc.2017.05.005
- Haltenort P., Hackbarth K., Oestreich D., Lautenschütz L., Arnold U., Sauer J. Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane // Catal. Commun. 2018. V. 109. № 2017. P. 80–84. https://doi.org/10.1016/j.catcom.2018.02.013
- Wang B., Yan X., Zhang X., Zhang H., Li F. Citric acid-modified beta zeolite for polyoxymethylene dimethyl ethers synthesis: the textural and acidic properties regulation // Appl. Catal., B. 2020. V. 266. P. 118645. https://doi.org/10.1016/j.apcatb.2020.118645
- Wu J., Zhu H., Wu Z., Qin Z., Yan L., Du B., Fan W., Wang J. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene // Green Chem. 2015. V. 17. № 4. P. 2353–2357. https://doi.org/10.1039/c4gc02510e
- Qi Z.H.A.O., Hui W.A.N.G., Qin Z.F., Wu Z.W., Wu J.B., Fan W.B., Wang J.G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts // J. Fuel Chem. Technol. (Beijing). 2011. V. 39. № 12. P. 918–923. https://doi.org/10.1016/s1872-5813(12)60003-6
- Беденко С.П., Дементьев К.И., Третьяков В.Ф., Максимов А.Л. Реакция Принса на гетерогенных катализаторах (обзор) // Нефтехимия. 2020. T. 60. № 4. C. 433–441. https://doi.org/10.31857/S0028242120040024 [Bedenko S.P., Dement’ev K.I., Tret’yakov V.F., Maksimov A.L. The Prins reaction over heterogeneous catalysts (a review) // Petrol. Chemistry. 2020. V. 60. № 7. P. 723–730. https://doi.org/10.1134/S0965544120070026]
- Bedenko S.P., Kozhevnikov A.A., Dement’ev K.I., Tret’yakov V.F., Maksimov A.L. The Prins condensation between i-butene and formaldehyde over modified BEA and MFI zeolites in liquid phase // Catal. Commun. 2020. V. 138. P. 105965. https://doi.org/10.1016/j.catcom.2020.105965
- Bedenko S.P., Dement’ev K.I., Tret’yakov V.F. Deactivation of zeolite catalysts in the prins reaction between propene and formaldehyde in the liquid phase // Catalysts. 2021. V. 11. № 10. P. 1181. https://doi.org/10.3390/catal11101181
- Labidi S., Ben Amar M., Passarello J.P., Le Neindre B., Kanaev A. Design of novel sulfated nanozirconia catalyst for biofuel synthesis // Ind. Eng. Chem. Res. 21017 V. 56. № 6. P. 1394–1403. https://doi.org/10.1021/acs.iecr.6b03448
- Li X., Cao J., Nawaz M.A., Liu D. Synergy of Lewis and Brønsted acid sites for polyoxymethylene dimethyl ether synthesis from methanol and formaldehyde solution over Zr4+ modified sulfonated resin // Fuel. 2021. V. 289. P. 119867. https://doi.org/10.1016/j.fuel.2020.119867
- Li X., Li S., Wang X., Nawaz M.A., Liu D. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia // Chin. J. Chem. Eng. 2022. V. 46. P. 161–172. https://doi.org/10.1016/j.cjche.2021.04.022
- Wang W., Gao X., Yang Q., Wang X., Song F., Zhang Q., Han Y., Tan Y. Vanadium oxide modified H-beta zeolite for the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation // Fuel. 2018. V. 238. P. 289–297. https://doi.org/10.1016/j.fuel.2018.10.098
- Bahmanpour A.M., Hoadley A., Tanksale A. Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase // Green Chem. 2015. V. 17. № 6. P. 3500–3507. https://doi.org/10.1039/c5gc00599j
- Sun R., Delidovich I., Palkovits R. Dimethoxymethane as a cleaner synthetic fuel: synthetic methods, catalysts, and reaction mechanism // ACS Catal. 2019. V. 9. № 2. P. 1298–1318. https://doi.org/10.1021/acscatal.8b04441
- Gierlich C.H., Beydoun K., Klankermayer J., Palkovits R. Challenges and opportunities in the production of oxymethylene dimethylether // Chem. Ing. Tech. 2020. V. 92. № 1–2. P. 116–124. https://doi.org/10.1002/cite.201900187
- Lucas S.P., Chan F.L., Fioroni G.M., Foust T.D., Gilbert A., Luecke J., McEnally C.S., Serdoncillo J.J.A., Zdanowicz A.J., Zhu J., Windom B. Fuel properties of oxymethylene ethers with terminating groups from methyl to butyl // Energy Fuels. 2022. V. 36. № 17. P. 10213–10225. https://doi.org/10.1021/acs.energyfuels.2c01414
- Drexler M., Haltenort P., Zevaco T.A., Arnold U., Sauer J. Synthesis of tailored oxymethylene ether (OME) fuels: via transacetalization reactions // Sustainable Energy Fuels. 2021. V. 5. P. 4311–4326. https://doi.org/10.1039/d1se00631b
- Arellano-Trevino M.A., Bartholet D., To A.T., Bartling A.W., Baddour F.G., Alleman T.L., Christensen E.D., Fioroni G.M., Hays C., Luecke J., Zhu J. Synthesis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks with improved fuel properties // ACS Sustainable Chem. Eng. 2021. V. 9. № 18. P. 6266–6273. https://doi.org/10.1021/acssuschemeng.0c09216
- Olson A.L., Tunér M., Verhelst S. A concise review of glycerol derivatives for use as fuel additives // Heliyon. 2023. V. 9. № 1. P. e13041. https://doi.org/10.1016/J.HELIYON.2023.E13041
- Trifoi A.R., Agachi P.Ş., Pap T. Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols // Renewable Sustainable Energy Rev. 2016. V. 62. P. 804–814. https://doi.org/10.1016/j.rser.2016.05.013
- Nord K.E., Haupt D. Reducing the emission of particles from a diesel engine by adding an oxygenate to the fuel // Environ. Sci. Technol. 2005. V. 39. № 16. P. 6260–6265. https://doi.org/10.1021/es048085h
- Хуснутдинов И.Ш., Ахметзянов А.М., Гаврилов В.И., Ззаббаров Р.Р., Ханова А.Г. Исследование 1,1-диэтоксиэтана как компонента дизельного топлива // Химия и химическая технология. 2009. Т. 52. № 11. С. 119–122. EDN: KXWDZV
- Jaubert S., Maurer G. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol). Part I: Acetaldehyde+ (methanol or ethanol or 1-propanol) // J. Chem. Thermodyn. 2014. V. 68. P. 332–342. https://doi.org/10.1016/j.jct.2013.03.022
- Song J., Cheenkachorn K., Wang J., Perez J., Boehman A.L., Young P.J., Waller F.J. Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine // Energy Fuels. 2002. V. 16. № 2. P. 294–301. https://doi.org/10.1021/EF010167T
- Ян В., Лю Ц., Ван В., Ли Л. Способ получения оксалата монооксидоуглеродным газофазным способом // Патент РФ № 2532348 С2. 2011. Заявка 06.09.2011.
- Луи Ж., Сунь Ф., Куай Ц. Способ получения оксалата газофазным способом с участием оксида углерода // Патент РФ № 2554887 С2. 2011. Заявка 13.04.2011.
- Fenton D.M., Steinwand P.J. Preparation of oxalates // Patent US № 3393136A. 1965. Appl. atd. 28.09.1965
- Swenson K.E., Zemach D., Nanjundiah C., Kariv-Miller E. Birch reductions of methoxyaromatics in aqueous solution // J. Org. Chem. 1983. V. 48. № 10. P. 1779–1780. https://doi.org/10.1021/jo00158a042
- Gao X., Zhu Y.P., Luo Z.H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors // Chem. Eng. Sci. 2011. V. 66. № 23. P. 6028–6038. https://doi.org/10.1016/j.ces.2011.08.031
- Ji Y., Liu G., Li W., Xiao W. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3 // J. Mol. Catal. A Chem. 2009. V. 314. № 1–2. P. 63–70. https://doi.org/10.1016/j.molcata.2009.08.018
- Yu Q., Sun H., Sun H., Li L., Zhu X., Ren S., Guo Q., Shen B. Highly mesoporous IM-5 zeolite prepared by alkaline treatment and its catalytic cracking performance // Microporous Mesoporous Mater. 2019. V. 273. P. 297–306. https://doi.org/10.1016/j.micromeso.2018.08.016
- Wang S., Zhang X., Zhao Y., Ge Y., Lv J., Wang B., Ma X. Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure // Front. Chem. Sci. Eng. 2012. V. 6. № 3. P. 259–269. https://doi.org/10.1007/S11705-012-1212-6
- Zhao T.J., Chen D., Dai Y.C., Yuan W.K., Holmen A. Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts // Ind. Eng. Chem. Res. 2004. V. 43. № 16. P. 4595–4601. https://doi.org/10.1021/ie030728z
- Yang L., Pan Z., Wang D., Wang S., Wang X., Ma H., Liu H., Wang C., Qu W., Tian Z. Highly effective Pd/MgO/γ-Al2O3 catalysts for CO oxidative coupling to dimethyl oxalate: the Effect of MgO coating on γ-Al2O3 // ACS Appl. Mater. Interfaces. 2021. V. 13. № 24. P. 28064–28071. https://doi.org/10.1021/ACSAMI.1C04051
- Feng X., Ling L., Cao Y., Zhang R., Fan M., Wang B. A DFT study on the catalytic CO oxidative coupling to dimethyl oxalate on Al-doped core-shell Pd clusters // J. Phys. Chem. C. 2018. V. 122. № 2. P. 1169–1179. https://doi.org/10.1021/ACS.JPCC.7B09272
- Bowden E. Methyl oxalate // Org. Synth. 1930. V. 10. P. 78. https://doi.org/10.15227/ORGSYN.010.0078
- Лядов В.А., Денисламова Е.С. Оптимизация метода синтеза диметилоксалата // Химия. Экология. Урбанистика. 2019. Т. 2. С. 335–337. EDN: SVPJXH
- Суярембитова Д.З., Калистратова А.В., Ощепков М.С., Коваленко Л.В. Получение эфиров щавелевой кислоты // Успехи в химии и химической технологии. 2016. Т. 30. № 11. С. 85–87. EDN: XEBHDB
- Ji G., Ding J., Zhong Q. Microreactor technology for synthesis of ethyl methyl oxalate from diethyl oxalate with methanol and its kinectics // Can. J. Chem. Eng. 2020. V. 98. № 11. P. 2321–2329. https://doi.org/10.1002/cjce.23775
- Malins K. The potential of K3PO4, K2CO3, Na3PO4 and Na2CO3 as reusable alkaline catalysts for practical application in biodiesel production // Fuel Process. Technol. 2018. V. 179. P. 302–312. https://doi.org/10.1016/J.FUPROC.2018.07.017
- Sun C., Qiu F., Yang D., Ye B. Preparation of biodiesel from soybean oil catalyzed by Al–Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst // Fuel Process. Technol. 2014. V. 126. P. 383–391. https://doi.org/10.1016/J.FUPROC.2014.05.021
- Platonov A.Y., Evdokimov A.N., Kurzin A.V., Maiyorova H.D. Solubility of potassium carbonate and potassium hydrocarbonate in methanol // J. Chem. Eng. Data. 2002. V. 47. № 5. P. 1175–1176. https://doi.org/10.1021/JE020012V
- Ma X., Gong J., Wang S., Gao N., Wang D., Yang X., He F. Reactivity and surface properties of silica supported molybdenum oxide catalysts for the transesterification of dimethyl oxalate with phenol // Catal. Commun. 2004. V. 5. № 3. P. 101–106. https://doi.org/10.1016/j.catcom.2003.12.001
- Biradar A.V., Umbarkar S.B., Dongare M.K. Transesterification of diethyl oxalate with phenol using MoO3/SiO2 catalyst // Appl. Catal. A Gen. 2005. V. 285. № 1–2. P. 190–195. https://doi.org/10.1016/j.apcata.2005.02.028
- Мамедов М.К., Пиралиев А.Г. Синтез бициклических и аллиловых диэфиров щавелевой кислоты // Журнал общей химии. 2007. Т. 77. № 9. С. 1517–1520. EDN: IIRWAT [Mamedov M.K., Piraliev A.G. Synthesis of bicyclic and allyl diesters of oxalic acid // Russ. J. Gen. Chem. 2007. V. 77. № 9. P. 1589–1592. https://doi.org/10.1134/S1070363207090149]
- Shi Y., Wang S., Ma X. Microwave preparation of Ti-containing mesoporous materials. Application as catalysts for transesterification // Chem. Eng. J. 2011. V. 166. № 2. P. 744–750. https://doi.org/10.1016/j.cej.2010.11.081
