Пассивация никеля в присутствии ванадия на катализаторах крекинга

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Проведены эксперименты по совместной пассивации никеля и ванадия борсодержащей добавкой на катализаторе крекинга. Исследовано влияние пассивации металлов маслорастворимой добавкой на основе бора на характеристики катализатора и его активность в крекинге углеводородного нефтяного сырья. Оценена активность борсодержащего пассиватора в дезактивации ванадия. Установлено, что применение пассиватора не увеличивает устойчивость катализатора к основному отравляющему действию ванадия, разрушению цеолитной структуры, однако снижает дегидрирующую активность ванадия, значительно улучшая характеристики процесса крекинга углеводородного сырья.

Full Text

Restricted Access

About the authors

Искандер Ильгизович Шакиров

Московский государственный университет имени М.В. Ломоносова

Author for correspondence.
Email: sammy-power96@yandex.ru
ORCID iD: 0000-0003-2029-693X
Russian Federation, Москва

Сергей Васильевич Лысенко

Московский государственный университет имени М.В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID iD: 0009-0006-7826-2811

д.х.н.

Russian Federation, Москва

Сергей Викторович Кардашев

Московский государственный университет имени М.В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID iD: 0000-0003-1818-7697

к.х.н.

Russian Federation, Москва

Наталья Александровна Синикова

Московский государственный университет имени М.В. Ломоносова

Email: sammy-power96@yandex.ru

к.х.н.

Russian Federation, Москва

Сергей Владимирович Егазарьянц

Московский государственный университет имени М.В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID iD: 0000-0001-9160-4050

д.х.н.

Russian Federation, Москва

Антон Львович Максимов

Московский государственный университет имени М.В. Ломоносова; Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: sammy-power96@yandex.ru
ORCID iD: 0000-0001-9297-4950

д.х.н., чл.-корр. РАН

Russian Federation, Москва; Москва

Эдуард Аветисович Караханов

Московский государственный университет имени М.В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID iD: 0000-0003-4727-954X

д.х.н., профессор

Russian Federation, Москва

References

  1. Salahshour P., Yavari M., Güleç F., Karaca H., Tarighi S., Habibzadeh S. Development of heavy metal passivators in residue fluid catalytic cracking process // Journal of Composites and Compounds. 2022. V. 4. № 13. P. 186–194. https://doi.org/10.52547/jcc.4.4.3
  2. Jeon H.J., Park S.K., Woo S.I. Evaluation of vanadium traps occluded in resid fluidized catalytic cracking (RFCC) catalyst for high gasoline yield // Applied Catalysis A: General. 2006. V. 306. P. 1–7. https://doi.org/10.1016/j.apcata.2006.02.048
  3. Караханов Э.А., Ковалева Н.Ф., Лысенко С.В. Влияние пассивации никеля цитратами сурьмы, олова и висмута на состав продуктов крекинга углеводородов различных классов // Вecтн. Моск. ун-та. Сер. 2. Химия. 1999. Т. 40. № 1. С. 60–63.
  4. Караханов Э.А., Братков А.А., Лысенко С.В. Реактивация отравленного никелем катализатора крекинга маслорастворимыми пассиваторами // Нефтехимия. 1995. Т. 35. № 5. С. 421–424. [Karakhanov E.A., Bratkov A.A., Lysenko S.V. Reactivation of a nickel-poisoned cracking catalyst with oil-soluble passivators // Petroleum Chemistry. 1995. V. 35. № 5. P. 402–405.]
  5. Keeley C.V., Shackleford A., Clough M., Srikantharajah S., O’Berry B., Yilmaz B. Catalyst technologies for improved FCC yields // Petroleum technology quarterly. 2017. V. 22. № 5. P. 31–35.
  6. Yuan C., Ju G., Chen Q., Yan T., Li Z. Preparation of B2O3/SBA-15 and application as matrix component in nickel-tolerant fluid catalytic cracking catalyst // China Petroleum Processing and Petrochemical Technology. 2023. V. 25. № 1. P. 144–150.
  7. Zhang C.C., Shi J., Hartlaub S., Palamara J.P., Petrovic I., Yilmaz B. In-situ diffuse reflective infrared Fourier transform spectroscopy (DRIFTS) study on Ni passivation in FCC catalysts from boron-based technology // Catalysis Communications. 2021. V. 150. 106273. https://doi.org/10.1016/j.catcom.2020.106273
  8. Yuan C., Zhou L., Chen Q., Su C., Li Z., Ju G. The research on anti-nickel contamination mechanism and performance for boron-modified FCC catalyst // Materials. 2022. V. 15. № 20. ID 7220. https://doi.org/10.3390/ma15207220
  9. Charisteidis I.D., Trikalitis P.N., Triantafyllidis K.S., Komvokis V., Yilmaz B. Characterization of Ni-phases and their transformations in fluid catalytic cracking (FCC) catalysts: comparison of conventional versus boron-based Ni-passivation // Catalysts. 2023. V. 13. N 1. ID 3. https://doi.org/10.3390/catal13010003
  10. Reynolds J.G. Nickel in petroleum refining // Petroleum Science and Technology. 2001. V. 19. № 7–8. P. 979–1007. https://doi.org/10.1081/LFT-100106915
  11. Escobar A.S., Pereira M.M., Pimenta R.D.M., Lau L.Y., Cerqueira H.S. Interaction between Ni and V with USHY and rare earth HY zeolite during hydrothermal deactivation // Applied Catalysis A: General. 2005. V. 286. № 2. P. 196–201. https://doi.org/10.1016/j.apcata.2005.03.002
  12. Yang S.-J., Chen Y.-W., Chiuping L. The interaction of vanadium and nickel in USY zeolite // Zeolites. 1995. V. 15. № 1. P. 77–82. https://doi.org/10.1016/0144-2449(94)00010-P
  13. Шакиров И.И., Кардашев С.В., Лысенко С.В., Караханов Э.А. Способ пассивации тяжелых металлов на катализаторах крекинга борсодержащими соединениями // Патент РФ № 2794336 C1. Заявка 17.04.2023.
  14. Etim U.J., Bai P., Liu X., Subhan F., Ullah R., Yan Z. Vanadium and nickel deposition on FCC catalyst: Influence of residual catalyst acidity on catalytic products // Microporous and Mesoporous Materials. 2019. V. 273. P. 276–285. https://doi.org/10.1016/j.micromeso.2018.07.011
  15. Etim U.J., Xu B., Bai P., Ullah R., Subhan F., Yan Z. Role of nickel on vanadium poisoned FCC catalyst: A study of physiochemical properties // J. of Energy Chemistry. 2016. V. 25. № 4. P. 667–676. https://doi.org/10.1016/j.jechem.2016.04.001
  16. Qin Z., Shen B., Yu Z., Deng F., Zhao L., Zhou S., Yuan D., Gao X., Wang B., Zhao H., Liu H. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking // J. of Catalysis. 2013. V. 298. P. 102–111. https://doi.org/10.1016/j.jcat.2012.11.023
  17. Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis // Chemical Reviews. 1997. V. 97. № 6. P. 2373–2420. https://doi.org/10.1021/cr960406n
  18. Moreno S., Poncelet G. Dealumination of small- and large-port mordenites: A comparative study // Microporous Materials. 1997. V. 12. № 4. P. 197–222. https://doi.org/10.1016/S0927-6513(97)00067-9
  19. Bai P., Yang M., Chen X., Liu Y., Yang W., Zhao L., Wu P., Wang C., Mintova S., Yan Z. Modulation of surface chemistry by boron modification to achieve a superior VOх/Al2O3 catalyst in propane dehydrogenation // Catalysis Today. 2022. V. 402. P. 248–258. https://doi.org/10.1016/j.cattod.2022.04.015
  20. Gambo Y., Adamu S., Lucky R.A., Ba-Shammakh M.S., Hossain M.M. Decoupling reaction network and designing robust VOx/Al2O3 catalyst with suitable site diversity for promoting CO2-mediated oxidative dehydrogenation of propane // Chemical Engineering Journal. 2024. V. 479. ID 147458. https://doi.org/10.1016/j.cej.2023.147458
  21. Król M., Mozgawa W., Jastrzębski W., Barczyk K. Application of IR spectra in the studies of zeolites from D4R and D6R structural groups // Microporous and Mesoporous Materials. 2012. V. 156. P. 181–188. https://doi.org/10.1016/j.micromeso.2012.02.040
  22. Buurmans I.L.C., Soulimani F., Ruiz-Martínez J., van der Bij H.E., Weckhuysen B.M. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy // Microporous and Mesoporous Materials. 2013. V. 166. P. 86–92. https://doi.org/10.1016/j.micromeso.2012.08.007
  23. Busca G. Infrared (IR) Spectroscopy. Springer Handbook of Advanced Catalyst. Cham: Springer International Publishing, 2023. P. 3–32. https://doi.org/10.1007/978-3-031-07125-6_1
  24. Dumeignil F., Guelton M., Rigole M., Amoureux J.P., Fernandez C., Grimblot J. Synthesis of high surface area boria–alumina mixed oxides characterization by 11B- and 27Al-NMR // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999. V. 158. № 1–2. P. 75–81. https://doi.org/10.1016/S0927-7757(99)00133-8
  25. Sen S., Xu Z., Stebbins J.F. Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution 11B, 29Si and 27Al NMR studies // Journal of Non-Crystalline Solids. 1998. V. 226. № 1. P. 29–40. https://doi.org/10.1016/S0022-3093(97)00491-2
  26. Шакиров И.И., Лысенко С.В., Бороноев М.П., Максимов А.Л., Караханов Э.А. Пассивация никеля на катализаторах крекинга // Журнал прикладной химии. 2023. Т. 96. № 6. С. 632–640. https://doi.org/10.31857/S0044461823060105 [Shakirov I.I., Kardashev S.V., Lysenko S.V., Boronoev M.P., Maximov A.L., Karakhanov E.A. Nickel passivation on cracking catalysts // Russ. J. Appl Chem. 2023. V. 96. P. 702–709. https://doi.org/10.1134/S1070427223060101].
  27. Jun Li, Guohua Luo, Fei Wei. A multistage NOx reduction process for a FCC regenerator // Chemical Engineering Journal. 2011. V. 173. № 2. P. 296–302. https://doi.org/10.1016/j.cej.2011.06.070
  28. Shi J., Guan J., Guo D., Zhang J., France L.J., Wang L., Li X. Nitrogen chemistry and coke transformation of FCC Coked Catalyst during the Regeneration Process // Scientific Reports. 2016. V. 6. № 1. ID 27309. https://doi.org/10.1038/srep27309
  29. Babich I.V., Seshan K., Lefferts L. Nature of nitrogen specie in coke and their role in NOx formation during FCC catalyst regeneration // Applied Catalysis B: Environmental. 2005. V. 59. № 3–4. P. 205–211. https://doi.org/10.1016/j.apcatb.2005.02.008
  30. Prado G.H.C., Rao Y., de Klerk A. Nitrogen removal from oil: a review // Energy & Fuels. 2017. V. 31. № 1. P. 14–36. https://doi.org/10.1021/acs.energyfuels.6b02779
  31. Adanenche D.E., Aliyu A., Atta A.Y., El-Yakubu B. J. Residue fluid catalytic cracking: А review on the mitigation strategies of metal poisoning of RFCC catalyst using metal passivators/traps // Fuel. 2023. V. 343. ID 127894. https://doi.org/10.1016/j.fuel.2023.127894
  32. Mehlberg R., Rosser F., Fei Z., Stevens C. Low NOx FCC catalyst regeneration process / Patent US № 7914666 B1. Appl. atd. 29.09.2006.
  33. Pan S., Shackleford A., McGuire Jr R., Smith G., Yilmaz B. Creative catalysis // Hydrocarb. Eng. 2015. V. 20. P. 46–52.
  34. Dishman K.L., Doolin P.K., Tullock L.D. NOx emissions in fluid catalytic cracking catalyst regeneration // Industrial and Engineering Chemistry Research. 1998. V. 37. № 12. P. 4631–4636. https://doi.org/10.1021/ie980208h

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of the catalysts: FCC-cat - fresh, FCC-cat-TPO - after thermocouple treatment, 2Ni3V-FCC-cat - after deactivation of 2000 ppm Ni and 3000 ppm V; 4Ni6V-FCC-cat - after deactivation of 4000 ppm Ni and 6000 ppm V; 4Ni6V-5B-FCC-cat - after passivation 4000 ppm Ni and 6000 ppm V; 4Ni6V-FCC-cat-cycle - after deactivation 4000 ppm Ni and 6000 ppm V and 5 cracking regeneration cycles

Download (216KB)
3. Fig. 2. Diffractograms of industrial cracking catalysts: (a) fresh; (b) after thermocouple treatment; (c) after decontamination of 2000 ppm Ni and 3000 ppm V; (d) after decontamination of 4000 ppm Ni and 6000 ppm V; (e) after decontamination of 6000 ppm V; (f) after passivation of 4000 ppm Ni and 6000 ppm V; g) after 6000 ppm V passivation; h) after 4000 ppm Ni and 6000 ppm V deactivation and five cracking regeneration cycles; i) after 4000 ppm Ni and 6000 ppm V passivation and five cracking regeneration cycles; ii) after 4000 ppm Ni and 6000 ppm V passivation and five cracking regeneration cycles

Download (183KB)
4. Fig. 3. SEM images, elemental mapping and EDS spectra of catalysts after thermocouple treatment (a, b) and (c, d), after deactivation with 4000 ppm Ni and 6000 ppm V (e, f), (g, h, i, j) and (k), after passivation with 4000 ppm Ni and 6000 ppm V (l, m), (n, o, p, q) and (r), respectively

Download (606KB)
5. Fig. 4. Temperature-programmed hydrogen reduction curves of industrial cracking catalysts: (a) after deactivation and passivation of 6000 ppm V; (b) after deactivation and passivation of 4000 ppm Ni; (c) after deactivation and passivation of 4000 ppm Ni and 6000 ppm V

Download (207KB)
6. Fig. 5. IR spectra of cracking catalysts: FCC-cat, fresh; FCC-cat-TPO, after thermocouple treatment; 2Ni3V-FCC-cat, after deactivation with 2000 ppm Ni and 3000 ppm V; 4Ni6V-FCC-cat, after deactivation with 4000 ppm Ni and 6000 ppm V; 4Ni6V-5B-FCC-cat, after passivation with 4000 ppm Ni and 6000 ppm V

Download (230KB)
7. Fig. 6. 11B NMR spectrum of the catalyst after passivation with 4000 ppm Ni and 6000 ppm V

Download (52KB)
8. Fig. 7. Process characteristics of catalytic cracking of hydrotreated gas oil on MAT unit in the presence of deactivated 2000 ppm vanadium and 3000 ppm nickel (2Ni3V-FCC- cat) and 4000 ppm vanadium and 6000 ppm nickel (4Ni6V-FCC-cat) catalysts and catalysts after passivation with boron-containing additives in the amount of 3000 (2Ni3V-3B-FCC-cat) and 5000 (4Ni6V-5B-FCC-cat) ppm in terms of boron

Download (91KB)
9. Fig. 8. Cracking product yields of hydrotreated vacuum gas oil in the presence of catalysts after deactivation with 4000 ppm nickel and 6000 ppm vanadium (4Ni6V-FCC-cat), after passivation with 4000 ppm nickel and 6000 ppm vanadium (4Ni6V-5B-FCC-cat) as a function of the number of cracking regeneration cycles

Download (209KB)

Copyright (c) 2024 Russian Academy of Sciences